updated with correct adapter use
Browse files
README.md
CHANGED
@@ -44,18 +44,49 @@ Install the required dependencies:
|
|
44 |
pip install transformers torch numpy pandas anarci
|
45 |
```
|
46 |
|
47 |
-
## π Loading Models
|
48 |
|
|
|
49 |
```python
|
|
|
|
|
50 |
from transformers import AutoModel, AutoTokenizer
|
51 |
-
from
|
52 |
|
53 |
-
#
|
54 |
model = AutoModel.from_pretrained("hemantn/ablang2", trust_remote_code=True)
|
55 |
tokenizer = AutoTokenizer.from_pretrained("hemantn/ablang2", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
ablang = AbLang2PairedHuggingFaceAdapter(model=model, tokenizer=tokenizer)
|
57 |
```
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
**Note**: Models automatically use GPU when available, otherwise fall back to CPU.
|
60 |
|
61 |
## βοΈ Available Utilities
|
@@ -70,30 +101,39 @@ ablang = AbLang2PairedHuggingFaceAdapter(model=model, tokenizer=tokenizer)
|
|
70 |
|
71 |
## π‘ Examples
|
72 |
|
73 |
-
### π AbLang2 (Paired Sequences)
|
74 |
```python
|
|
|
|
|
75 |
from transformers import AutoModel, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
from adapter import AbLang2PairedHuggingFaceAdapter
|
77 |
|
78 |
-
#
|
79 |
-
model = AutoModel.from_pretrained("your-username/ablang2", trust_remote_code=True)
|
80 |
-
tokenizer = AutoTokenizer.from_pretrained("your-username/ablang2", trust_remote_code=True)
|
81 |
ablang = AbLang2PairedHuggingFaceAdapter(model=model, tokenizer=tokenizer)
|
82 |
|
83 |
-
# Restore masked
|
84 |
masked_seqs = [
|
85 |
['EVQ***SGGEVKKPGASVKVSCRASGYTFRNYGLTWVRQAPGQGLEWMGWISAYNGNTNYAQKFQGRVTLTTDTSTSTAYMELRSLRSDDTAVYFCAR**PGHGAAFMDVWGTGTTVTVSS',
|
86 |
'DIQLTQSPLSLPVTLGQPASISCRSS*SLEASDTNIYLSWFQQRPGQSPRRLIYKI*NRDSGVPDRFSGSGSGTHFTLRISRVEADDVAVYYCMQGTHWPPAFGQGTKVDIK']
|
87 |
]
|
88 |
restored = ablang(masked_seqs, mode='restore')
|
|
|
89 |
```
|
90 |
|
91 |
## π Detailed Usage
|
92 |
|
93 |
-
For comprehensive examples
|
94 |
-
- [`test_ablang2_HF_implementation.ipynb`](test_ablang2_HF_implementation.ipynb)
|
95 |
-
|
96 |
-
This notebook demonstrates all utilities with real examples, including alignment features and advanced usage patterns.
|
97 |
|
98 |
## π Citation
|
99 |
|
|
|
44 |
pip install transformers torch numpy pandas anarci
|
45 |
```
|
46 |
|
47 |
+
## π Loading Models from Hugging Face Hub
|
48 |
|
49 |
+
### Method 1: Load Model and Tokenizer, then Import Adapter
|
50 |
```python
|
51 |
+
import sys
|
52 |
+
import os
|
53 |
from transformers import AutoModel, AutoTokenizer
|
54 |
+
from transformers.utils import cached_file
|
55 |
|
56 |
+
# Load model and tokenizer from Hugging Face Hub
|
57 |
model = AutoModel.from_pretrained("hemantn/ablang2", trust_remote_code=True)
|
58 |
tokenizer = AutoTokenizer.from_pretrained("hemantn/ablang2", trust_remote_code=True)
|
59 |
+
|
60 |
+
# Find the cached model directory and import adapter
|
61 |
+
adapter_path = cached_file("hemantn/ablang2", "adapter.py")
|
62 |
+
cached_model_dir = os.path.dirname(adapter_path)
|
63 |
+
sys.path.insert(0, cached_model_dir)
|
64 |
+
|
65 |
+
# Import and create the adapter
|
66 |
+
from adapter import AbLang2PairedHuggingFaceAdapter
|
67 |
ablang = AbLang2PairedHuggingFaceAdapter(model=model, tokenizer=tokenizer)
|
68 |
```
|
69 |
|
70 |
+
### Method 2: Using importlib (Alternative)
|
71 |
+
```python
|
72 |
+
import importlib.util
|
73 |
+
from transformers import AutoModel, AutoTokenizer
|
74 |
+
from transformers.utils import cached_file
|
75 |
+
|
76 |
+
# Load model and tokenizer
|
77 |
+
model = AutoModel.from_pretrained("hemantn/ablang2", trust_remote_code=True)
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained("hemantn/ablang2", trust_remote_code=True)
|
79 |
+
|
80 |
+
# Load adapter dynamically
|
81 |
+
adapter_path = cached_file("hemantn/ablang2", "adapter.py")
|
82 |
+
spec = importlib.util.spec_from_file_location("adapter", adapter_path)
|
83 |
+
adapter_module = importlib.util.module_from_spec(spec)
|
84 |
+
spec.loader.exec_module(adapter_module)
|
85 |
+
|
86 |
+
# Create the adapter
|
87 |
+
ablang = adapter_module.AbLang2PairedHuggingFaceAdapter(model=model, tokenizer=tokenizer)
|
88 |
+
```
|
89 |
+
|
90 |
**Note**: Models automatically use GPU when available, otherwise fall back to CPU.
|
91 |
|
92 |
## βοΈ Available Utilities
|
|
|
101 |
|
102 |
## π‘ Examples
|
103 |
|
104 |
+
### π AbLang2 (Paired Sequences) - Restore Example
|
105 |
```python
|
106 |
+
import sys
|
107 |
+
import os
|
108 |
from transformers import AutoModel, AutoTokenizer
|
109 |
+
from transformers.utils import cached_file
|
110 |
+
|
111 |
+
# 1. Load model and tokenizer from Hugging Face Hub
|
112 |
+
model = AutoModel.from_pretrained("hemantn/ablang2", trust_remote_code=True)
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained("hemantn/ablang2", trust_remote_code=True)
|
114 |
+
|
115 |
+
# 2. Import adapter
|
116 |
+
adapter_path = cached_file("hemantn/ablang2", "adapter.py")
|
117 |
+
cached_model_dir = os.path.dirname(adapter_path)
|
118 |
+
sys.path.insert(0, cached_model_dir)
|
119 |
from adapter import AbLang2PairedHuggingFaceAdapter
|
120 |
|
121 |
+
# 3. Create adapter
|
|
|
|
|
122 |
ablang = AbLang2PairedHuggingFaceAdapter(model=model, tokenizer=tokenizer)
|
123 |
|
124 |
+
# 4. Restore masked sequences
|
125 |
masked_seqs = [
|
126 |
['EVQ***SGGEVKKPGASVKVSCRASGYTFRNYGLTWVRQAPGQGLEWMGWISAYNGNTNYAQKFQGRVTLTTDTSTSTAYMELRSLRSDDTAVYFCAR**PGHGAAFMDVWGTGTTVTVSS',
|
127 |
'DIQLTQSPLSLPVTLGQPASISCRSS*SLEASDTNIYLSWFQQRPGQSPRRLIYKI*NRDSGVPDRFSGSGSGTHFTLRISRVEADDVAVYYCMQGTHWPPAFGQGTKVDIK']
|
128 |
]
|
129 |
restored = ablang(masked_seqs, mode='restore')
|
130 |
+
print(f"Restored sequences: {restored}")
|
131 |
```
|
132 |
|
133 |
## π Detailed Usage
|
134 |
|
135 |
+
For comprehensive examples of all utilities (seqcoding, rescoding, likelihood, probability, pseudo_log_likelihood, confidence, and more), see:
|
136 |
+
- **[`test_ablang2_HF_implementation.ipynb`](test_ablang2_HF_implementation.ipynb)** - Complete notebook with all utilities and advanced usage patterns
|
|
|
|
|
137 |
|
138 |
## π Citation
|
139 |
|