helinivan commited on
Commit
7bdeccf
1 Parent(s): 5bec18b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: "it"
3
+ tags:
4
+ - bert
5
+ - sarcasm-detection
6
+ - text-classification
7
+ widget:
8
+ - text: "Auto, stop a diesel e benzina dal 2035. Ecco cosa cambia per i consumatori"
9
+ ---
10
+
11
+ # Italian Sarcasm Detector
12
+
13
+ Italian Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on dbmdz/bert-base-italian-uncased and the training data consists of scraped data from Italian non-sarcastic newspaper (Il Giornale) and sarcastic newspaper (Lercio).
14
+
15
+ ## Metrics:
16
+
17
+
18
+ ## Training Data
19
+
20
+ Scraped data:
21
+ - Italian non-sarcastic news from [Il Giornale]([https://www.ilgiornale.it])
22
+ - Italian sarcastic news from [Lercio]([https://www.lercio.it])
23
+
24
+ Codebase:
25
+ - Git Repo: [Official repository](https://github.com/helinivan/multilingual-sarcasm-detector)
26
+
27
+ ---
28
+
29
+ ## Example of classification
30
+
31
+ ```python
32
+ from transformers import AutoModelForSequenceClassification
33
+ from transformers import AutoTokenizer
34
+ import string
35
+
36
+ def preprocess_data(text: str) -> str:
37
+ return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
38
+
39
+ MODEL_PATH = "helinivan/italian-sarcasm-detector"
40
+
41
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
42
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
43
+
44
+ text = "Auto, stop a diesel e benzina dal 2035. Ecco cosa cambia per i consumatori"
45
+ tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=512, return_tensors="pt")
46
+ output = model(**tokenized_text)
47
+ probs = output.logits.softmax(dim=-1).tolist()[0]
48
+ confidence = max(probs)
49
+ prediction = probs.index(confidence)
50
+ results = {"is_sarcastic": prediction, "confidence": confidence}
51
+
52
+ ```
53
+
54
+ Output:
55
+
56
+ ```
57
+ {'is_sarcastic': 1, 'confidence': 0.9999909400939941}
58
+ ```
59
+
60
+ ## Performance
61
+ | Model-Name | F1 | Precision | Recall | Accuracy
62
+ | ------------- |:-------------| -----| -----| ----|
63
+ | helinivan/english-sarcasm-detector | 94.48 | 94.46 | 94.51 | 94.48
64
+ | helinivan/italian-sarcasm-detector | 92.99 | 92.77 | 93.24 | 93.42
65
+ | helinivan/multilingual-sarcasm-detector | 90.91 | 91.51 | 90.44 | 91.55