ppo-LunarLander-v2 / config.json
heisenberg's picture
Upload PPO LunarLander-v2 trained agent
67454ef verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb5de8924d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb5de892560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb5de8925f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb5de892680>", "_build": "<function ActorCriticPolicy._build at 0x7eb5de892710>", "forward": "<function ActorCriticPolicy.forward at 0x7eb5de8927a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb5de892830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb5de8928c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7eb5de892950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb5de8929e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb5de892a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb5de892b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb5dea33f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710461483738575516, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADiAjzhOLW6hheaOePNJTaPZnS5PG4WNQAAgD8AAIA/M9/kvI8mPrpS2oKyi6aEsB9IWjso6u8yAACAPwAAgD+zHSk99rxSugHlBrRCoU4ueVSBugKBuDMAAIA/AACAPzP5Qr7oOKi8lLIcvbrvkbv0XBE+ywdmPAAAgD8AAIA/4EiOPkS1Rj8+Ai29ZZKhvqM5Oz5RPiC+AAAAAAAAAAAavA4+vNJtPn+HLb4BR6u+k3ccu7JrYbwAAAAAAAAAAE013z2PlB09Zt08O99oYr6HrDI8GrWwPQAAAAAAAAAAwO4Svhd2ST+qk5W9RJOSvnk9FL7WTZU8AAAAAAAAAAB6VxO+ZUEAP3BOqD00RWm+3G3Tu9AZPz0AAAAAAAAAAEB1u73hAJa6QtgZuMJbEbO76zC6PycyNwAAgD8AAIA/M+fTvSRj+z32Cd89akzmvRA5Cz0KYOq8AAAAAAAAAABNWVW9PTogu0I2kDsttY08Ll4TvGDadD0AAIA/AACAPzPF3rw29Ra82AplO5HCrDx3joC9y0yOPQAAgD8AAIA/jTa9PRk4mz8q/SU/MF8cvx9apTzmxN09AAAAAAAAAABNQSi9pa23P/JgAb+n+SU9vFkJPbnkCj0AAAAAAAAAAADhMz2v/zA+8aIXvkzAiL6KL629YVatvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHES4JiRW92MAWyUTTMBjAF0lEdAkO+/FWGRFXV9lChoBkdAcL6V58jRlmgHTTYBaAhHQJDwO/1xsEd1fZQoaAZHQG5C6BqbjLloB01GAWgIR0CQ8SUsWfsedX2UKGgGR0Bw8jphWo3raAdNDgFoCEdAkPFjRtxdZHV9lChoBkdActBAH3UQTWgHTSABaAhHQJDzVbFCLMt1fZQoaAZHQHFBkUoKD01oB005AWgIR0CQ82QJHAh0dX2UKGgGR0Bx2MDV6NVBaAdNCgFoCEdAkPOyS7oStnV9lChoBkdAce2zeoDPnmgHTR0BaAhHQJDz/vE0iyJ1fZQoaAZHQHF6PnW8RL9oB01KAWgIR0CQ9DYQJ5VwdX2UKGgGR0BxxkiGFi8WaAdNHgFoCEdAkPTPqPfbbnV9lChoBkdAcDs6wMYuTWgHTRMBaAhHQJD1Gy2QXAN1fZQoaAZHQHCqCuZCv5hoB00hAWgIR0CQ9V7IkqtpdX2UKGgGR0BxFREtuk1uaAdNIAFoCEdAkPXdfTkQw3V9lChoBkdAcL9iL2pQ12gHTSABaAhHQJD26F23azx1fZQoaAZHQHJa9diUgSxoB007AWgIR0CQ9wyNn5BUdX2UKGgGR0BwDj2IwdsBaAdNHQFoCEdAkPhJWV/tpnV9lChoBkdAcThfrKNhmWgHTSIBaAhHQJD4hLAYYSB1fZQoaAZHQGuIWPtD2J1oB00TAWgIR0CQ+JUBXCCSdX2UKGgGR0BxnoH7gsK9aAdNDgFoCEdAkPmJZW7vonV9lChoBkdAcmfya/h2n2gHTQ8BaAhHQJD7htIkJKJ1fZQoaAZHQHL9/K6nR9hoB0v5aAhHQJD7oMLF4s51fZQoaAZHQHDhfyCnP3VoB00aAWgIR0CQ+9jfek57dX2UKGgGR0ByzsvkBCD3aAdNLQFoCEdAkPznIdU83nV9lChoBkdAcdBjBVMmGGgHTQIBaAhHQJD9B+rlvIh1fZQoaAZHQHI/wuuieupoB01HAWgIR0CQ/g0PH1e0dX2UKGgGR0Bw1u1Aqur7aAdNwgFoCEdAkP9mcJ+lTHV9lChoBkdAbdnz4k/r0WgHTSkBaAhHQJD/Zga3qiZ1fZQoaAZHQG6YvnKW9lFoB00XAWgIR0CRABfwI+nqdX2UKGgGR0BvOTSZ0CA+aAdNaQFoCEdAkQBYqTbFj3V9lChoBkdAb+i86FM7EGgHTVsBaAhHQJEAfY4ACGN1fZQoaAZHQHC9VLamGdtoB01RAWgIR0CRAgyfcvdudX2UKGgGR0BxRT6JqIrOaAdNKAFoCEdAkQIUlu3tr3V9lChoBkdAcOSXA/LTyGgHTQoBaAhHQJECfivPkaN1fZQoaAZHQHECrfDUExJoB01CAWgIR0CRAx2GqPwNdX2UKGgGR0ByitELH+6zaAdNbgFoCEdAkQSWWyC4BnV9lChoBkdAb3cmzjWCmWgHTRABaAhHQJEEnowEhaF1fZQoaAZHQG5R0lAu7H1oB00YAWgIR0CRBOq/dqL1dX2UKGgGR0BwgNXxOLzgaAdNFwFoCEdAkQYBzV+ZxHV9lChoBkdAcEJENvwVkGgHTS0BaAhHQJEGlQpF1CB1fZQoaAZHQHHqYJ/oaDRoB00RAWgIR0CRBsl5nlGPdX2UKGgGR0Byii5I6KceaAdNewFoCEdAkQf2XC0ngHV9lChoBkdAcj6Wykbgj2gHTQABaAhHQJEID0g8r7R1fZQoaAZHQHC2a8Djin5oB002AWgIR0CRCPL/CIk7dX2UKGgGR0BwnWC2+fyxaAdNQAFoCEdAkQk8gdOqN3V9lChoBkdAcMxhm5DqnmgHTT4BaAhHQJEJs2uPmxN1fZQoaAZHQHCYi39aUzNoB00EAWgIR0CRCd4YJmdzdX2UKGgGR0BxykA1ejVQaAdNAwFoCEdAkQo1cD8tPHV9lChoBkdAbkpuy/sVtWgHTRQBaAhHQJELQK2KEWZ1fZQoaAZHQHCAGcWj459oB02HAWgIR0CRH1yyD7IldX2UKGgGR0ByFhAAyVOcaAdNCQFoCEdAkR+DAN5MUXV9lChoBkdAcavcQRPGhmgHTV8BaAhHQJEfp3Sro4d1fZQoaAZHQG0HI4uK4x1oB01EAWgIR0CRIR7mdRR/dX2UKGgGR0BxsXze40/GaAdNBAFoCEdAkSF1bzK9wnV9lChoBkdAcImenAIppmgHTS4BaAhHQJEh7noxHoZ1fZQoaAZHQHG2mlANXo1oB01sAWgIR0CRIp6u4gA7dX2UKGgGR0Bx/C1D0DlpaAdNOQFoCEdAkSLG9xp+MXV9lChoBkdAco68e0XxfGgHTR0BaAhHQJEjUZzgdfd1fZQoaAZHQHJx31anrIJoB00tAWgIR0CRI928IzFddX2UKGgGR0BxOeNwR5C4aAdNGQFoCEdAkSQaq0dBB3V9lChoBkdAblEOKfnOjmgHTRgBaAhHQJEkVs2vStx1fZQoaAZHQHAcuhoM8YBoB00IAWgIR0CRJHzD4xk/dX2UKGgGR0Bx6zynUDuCaAdNLwFoCEdAkSVbi++M63V9lChoBkdAbfJr1M/QjWgHTTkBaAhHQJEmFArxy4p1fZQoaAZHQHCuuiFj/dZoB00vAWgIR0CRJt+I/JNkdX2UKGgGR0Bwo7MkhRqHaAdNHAFoCEdAkSdZd4Vym3V9lChoBkdAcpqAbQ1JlWgHTR4BaAhHQJEnjiS7oSt1fZQoaAZHQHJ8JK8L8aZoB008AWgIR0CRKB84PwuvdX2UKGgGR0BwMv2Xb/OuaAdNGwFoCEdAkSl4iLVFyHV9lChoBkdAcZvbZOBUaWgHTQ4BaAhHQJEplrAP/aR1fZQoaAZHQHBYhJul41RoB00/AWgIR0CRKjYAbQ1KdX2UKGgGR0BssyL0jC53aAdNHwFoCEdAkSsJpvgm7nV9lChoBkdAcFsg/C66KGgHTSkBaAhHQJErKoS+QEJ1fZQoaAZHQG5YauW8h9toB00XAWgIR0CRLAA3DNyHdX2UKGgGR0BuJZ8Sf16FaAdNLgFoCEdAkSwdm16VuHV9lChoBkdAbTIvRqoIfWgHTSEBaAhHQJEs9rgwXZZ1fZQoaAZHQDyOzRhMJyBoB0vNaAhHQJEtpm03OwB1fZQoaAZHQHIoqshgVoJoB01CAWgIR0CRLda2WpqAdX2UKGgGR0By0DP2PDHfaAdNEgFoCEdAkS5eA3DNyHV9lChoBkdAcPREIPbwjWgHTTEBaAhHQJEuc8KXv6V1fZQoaAZHQHDkJaRp1zRoB00MAWgIR0CRL4a/ATIvdX2UKGgGR0ByZ/8pCrtFaAdNJgFoCEdAkS+T0xubZ3V9lChoBkdAcMwGKQ7tA2gHTb4BaAhHQJEw+JVKf4B1fZQoaAZHQHHKPYBeXzFoB00uAWgIR0CRMQijtXxOdX2UKGgGR0BuLiREF4cFaAdNEQFoCEdAkTGNYB/7SHV9lChoBkdAbycw1R+BpmgHS/hoCEdAkTNNCqp97XV9lChoBkdAcNyfmcOLBWgHTRkBaAhHQJEzVsVLzwt1fZQoaAZHQG9ePb48EFJoB00oAWgIR0CRM+2FWXC1dX2UKGgGR0BwoV9NN8E3aAdNSAFoCEdAkTP9vwVj7XV9lChoBkdAblKYCyQgcWgHTRQBaAhHQJE0QUSIxg11fZQoaAZHQHFdCL2pQ1toB01xAWgIR0CRNHR4QjD9dX2UKGgGR0BwwQWDYh+waAdNBgFoCEdAkTSnOKO1fHV9lChoBkdAcIETG5tm+WgHTRoBaAhHQJE1v9FWn0l1fZQoaAZHQHBpPIbOu7poB00iAWgIR0CRNibn5i3HdX2UKGgGR0Bvdkm6XjU/aAdNMQFoCEdAkTc0lAu7H3V9lChoBkdAcbrpsGgSOGgHTRsBaAhHQJE3zKkl/pd1fZQoaAZHQHGZZwKjSG9oB01PAWgIR0CROAHuqm0mdX2UKGgGR0By/Yaef7JoaAdNVAFoCEdAkTmuZLIxQHV9lChoBkdAb2gn1FpfyGgHTS8BaAhHQJE6DxFy7wt1fZQoaAZHQHHx2/zreIloB00lAWgIR0CRPDPWhAW0dX2UKGgGR0BvNtHDrJKbaAdNKgFoCEdAkTxupKjBVXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}