update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Rouge1
|
23 |
type: rouge
|
24 |
-
value:
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,12 +31,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 2.
|
35 |
-
- Rouge1:
|
36 |
-
- Rouge2:
|
37 |
-
- Rougel:
|
38 |
-
- Rougelsum:
|
39 |
-
- Gen Len: 19.0
|
40 |
|
41 |
## Model description
|
42 |
|
@@ -55,22 +54,26 @@ More information needed
|
|
55 |
### Training hyperparameters
|
56 |
|
57 |
The following hyperparameters were used during training:
|
58 |
-
- learning_rate:
|
59 |
- train_batch_size: 8
|
60 |
- eval_batch_size: 8
|
61 |
- seed: 42
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
-
| Training Loss | Epoch | Step | Validation Loss | Rouge1
|
69 |
-
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Rouge1
|
23 |
type: rouge
|
24 |
+
value: 19.4885
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 2.1303
|
35 |
+
- Rouge1: 19.4885
|
36 |
+
- Rouge2: 9.7756
|
37 |
+
- Rougel: 16.7539
|
38 |
+
- Rougelsum: 18.153
|
|
|
39 |
|
40 |
## Model description
|
41 |
|
|
|
54 |
### Training hyperparameters
|
55 |
|
56 |
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 5.6e-05
|
58 |
- train_batch_size: 8
|
59 |
- eval_batch_size: 8
|
60 |
- seed: 42
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
+
- num_epochs: 8
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
|
69 |
+
| 2.9287 | 1.0 | 124 | 2.3690 | 18.7685 | 8.721 | 15.7134 | 17.2109 |
|
70 |
+
| 2.5051 | 2.0 | 248 | 2.2540 | 19.5651 | 9.5886 | 16.5619 | 18.1252 |
|
71 |
+
| 2.4042 | 3.0 | 372 | 2.2140 | 19.4716 | 9.7429 | 16.6675 | 18.0006 |
|
72 |
+
| 2.3442 | 4.0 | 496 | 2.1800 | 19.5841 | 9.7078 | 16.7923 | 18.1682 |
|
73 |
+
| 2.3075 | 5.0 | 620 | 2.1562 | 19.4162 | 9.6647 | 16.5106 | 17.9637 |
|
74 |
+
| 2.2693 | 6.0 | 744 | 2.1394 | 19.5064 | 9.8462 | 16.6515 | 18.0461 |
|
75 |
+
| 2.2714 | 7.0 | 868 | 2.1321 | 19.475 | 9.7216 | 16.6698 | 18.1103 |
|
76 |
+
| 2.2413 | 8.0 | 992 | 2.1303 | 19.4885 | 9.7756 | 16.7539 | 18.153 |
|
77 |
|
78 |
|
79 |
### Framework versions
|