hedderich/ppo-LunarLander-v2
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +32 -32
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/pytorch_variables.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +5 -5
- results.json +1 -1
README.md
CHANGED
|
@@ -16,7 +16,7 @@ model-index:
|
|
| 16 |
type: LunarLander-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
-
value:
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
|
|
|
| 16 |
type: LunarLander-v2
|
| 17 |
metrics:
|
| 18 |
- type: mean_reward
|
| 19 |
+
value: 247.30 +/- 13.57
|
| 20 |
name: mean_reward
|
| 21 |
verified: false
|
| 22 |
---
|
config.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0a5f8795e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0a5f879670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0a5f879700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0a5f879790>", "_build": "<function ActorCriticPolicy._build at 0x7f0a5f879820>", "forward": "<function ActorCriticPolicy.forward at 0x7f0a5f8798b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0a5f879940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0a5f8799d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0a5f879a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0a5f879af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0a5f879b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0a5f879c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0a5fbcd1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701613917454831634, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADambwp2GK6fMsPu0+KJbb+pvS5C9iXNQAAgD8AAIA/mgqSPXu6grpWc+o6BtDGNY3eSbqwdga6AACAPwAAgD+mYOg9z/8uP3jhFb3KlK2+xa9yvPrWlDwAAAAAAAAAAJMVWL7aFDc/bSz5PTpuZ76jfI29IfvBPQAAAAAAAAAAJoe5vUh3hboWbS+6c67qtCkWjjo9Xks5AAAAAAAAgD+aExC8oiKrPr2nab1Ow3++KI5DvTsYkT0AAAAAAAAAAOaz2b2QD7Q+Gco4PrHxab5/E5M9O1lNPQAAAAAAAAAATXQ6PY8uY7qQ9M66VXjEtcBrQrlG4/I5AACAPwAAgD+aeS49FNiJuvijbbmL20O0BNdqOoD1iTgAAIA/AACAPzN7TDupgag/0DqzPIUkqr7pSvA7jmwsvQAAAAAAAAAAzfJovSlIGroW8rW3bbefsgUEGDrt89g2AACAPwAAgD8AQKY82WuYPx7BiD2dT5m+lO8KuyVEED0AAAAAAAAAADN/8LspEEO6yCqgOg0v+TU32lg6WtO6uQAAgD8AAIA/pqa/PVBZrT5hHAy9jcw5vjZ2ML0AgFU9AAAAAAAAAAAA9Q8+HcPJPi2QR75++KO+RxVQvUPCgr0AAAAAAAAAABohfb32tGm63NKbOom/jzW60uA6t9WzuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQ5Shi9ZieMAWyUTegDjAF0lEdApuILtNSIg3V9lChoBkdAZdrmOEM9bGgHTegDaAhHQKbpRcIJJGx1fZQoaAZHQGOO4VqN6xBoB03oA2gIR0Cm81KW1MM7dX2UKGgGR0BlqKHTI/7jaAdN6ANoCEdApvYX+hoM8nV9lChoBkdAZP2n3ta6jGgHTegDaAhHQKcAzcMVk+Z1fZQoaAZHQF8a+hGpdbBoB03oA2gIR0CnAecMVk+YdX2UKGgGR0BlLvIbOu7paAdN6ANoCEdApxcNxZMcqHV9lChoBkdAZZP9UCJXQ2gHTegDaAhHQKcZTXNke6t1fZQoaAZHQGGPJ9qk/KRoB03oA2gIR0CnHB3zcynDdX2UKGgGR0BijMMTewcHaAdN6ANoCEdApyhSf16E8XV9lChoBkdAZB1x5s0pE2gHTegDaAhHQKcuXVS4vvl1fZQoaAZHQHIEwe3hGYtoB03FAmgIR0CnL39uYQardX2UKGgGR0BeVDvAoG6gaAdN6ANoCEdApzLZ26kIonV9lChoBkdAZwnWI42jwmgHTegDaAhHQKc1bmdy1eB1fZQoaAZHQGM0qwY+B6NoB03oA2gIR0CnOc52pyZKdX2UKGgGR0BizXlKbrkbaAdN6ANoCEdApzomdPLxJHV9lChoBkdAYtmEqUeMh2gHTegDaAhHQKc65ELH+611fZQoaAZHQGBXL+PzWf9oB03oA2gIR0CnPCw3o9s8dX2UKGgGR0Bhj2oYNy5qaAdN6ANoCEdAp00ozJp35nV9lChoBkdAX0fGbTc7AGgHTegDaAhHQKdQBznRsuZ1fZQoaAZHQGVOcer+5vtoB03oA2gIR0CnWxYMfA9FdX2UKGgGR0BmagAdXDFZaAdN6ANoCEdAp1wt50KZ2XV9lChoBkdAcFc4Hoouw2gHTasCaAhHQKdw0gf2bod1fZQoaAZHQGIU3PZ7HABoB03oA2gIR0CncZHlGPPtdX2UKGgGR0Bj0FCLMs6JaAdN6ANoCEdAp3PDnJT2nXV9lChoBkdAZSdszl90BGgHTegDaAhHQKd2bhjOLR91fZQoaAZHQF97KzzErG1oB03oA2gIR0Cnd7k0Jng6dX2UKGgGR0BgASnk1dgOaAdN6ANoCEdAp4gqz/p+t3V9lChoBkdAZ4sm51/2CmgHTegDaAhHQKeJT9tuUEB1fZQoaAZHQGJyywwCbMJoB03oA2gIR0CnjKrT6SDAdX2UKGgGR0BmzFmxt52RaAdN6ANoCEdAp49AIF/x2HV9lChoBkdAZrIhFEy+H2gHTegDaAhHQKeT+oQ4CIV1fZQoaAZHQGDv1HnU2DRoB03oA2gIR0CnlMLy1/lRdX2UKGgGR0BnltDIBBAwaAdN6ANoCEdAp5YpgkTpPnV9lChoBkdAUTXxXnyNGWgHS+xoCEdAp6iHDm8ujHV9lChoBkdAYUWQ8wHqvGgHTegDaAhHQKeotBTGYKJ1fZQoaAZHQGalYEwFkhBoB03oA2gIR0Cnq4gdfb9IdX2UKGgGR0BjIs5CF9KFaAdN6ANoCEdAp7ZvxH5JsnV9lChoBkdAYi8GRmseXGgHTegDaAhHQKe3hWsijcp1fZQoaAZHQGTe9Zid8RdoB03oA2gIR0Cny+wg9vCNdX2UKGgGR0BgxbLpzLfUaAdN6ANoCEdAp8yo1zhgmnV9lChoBkdAZMEoWHk92WgHTegDaAhHQKfOxx1gYxd1fZQoaAZHQGJFKHwgDA9oB03oA2gIR0Cn0XTNliBodX2UKGgGR0BmN8TSLIgeaAdN6ANoCEdAp9LGmrKeTXV9lChoBkdAZaENb1RLsmgHTegDaAhHQKfkGHSnccl1fZQoaAZHQGJSwAlv60poB03oA2gIR0Cn5UgrpaA4dX2UKGgGR0BlTTB2wFC+aAdN6ANoCEdAp+ics+V1OnV9lChoBkdAYi3VOsT37GgHTegDaAhHQKfrShY/3WZ1fZQoaAZHQGdwgy2x6fJoB03oA2gIR0Cn8AqwhW5pdX2UKGgGR0BmK91fVqetaAdN6ANoCEdAp/DW/1xsEnV9lChoBkdAZzAjafzz3GgHTegDaAhHQKgFO1OTJQt1fZQoaAZHQGNvcfFJg9hoB03oA2gIR0CoBWhP9DQadX2UKGgGR0BjTPC66J66aAdN6ANoCEdAqAhLhLoOhHV9lChoBkdAZztAzHjp92gHTegDaAhHQKgTR84xUNt1fZQoaAZHQGdQ0DuBtk5oB03oA2gIR0CoFF/ZmI0qdX2UKGgGR0Bkq/QY1pCbaAdN6ANoCEdAqCh7GT9sJ3V9lChoBkdAY4oZiNKh+WgHTegDaAhHQKgpOl41P311fZQoaAZHQGITXarWAgBoB03oA2gIR0CoK2WKdhAodX2UKGgGR0Bl7mFev6j4aAdN6ANoCEdAqC4l0zTF2nV9lChoBkdAZS4saKk2xmgHTegDaAhHQKgvj5t3wCt1fZQoaAZHQG2cPOQhfShoB01iAWgIR0CoMsyYoiLVdX2UKGgGR0BhzpfBvaUSaAdN6ANoCEdAqEAQbuMMqnV9lChoBkdAY94VZ9uxbGgHTegDaAhHQKhBILvTgEV1fZQoaAZHQGVUbyQPqcFoB03oA2gIR0CoRDg5BC2MdX2UKGgGR0BgPLe9Ba9saAdN6ANoCEdAqEafpwCKaXV9lChoBkdAY0sZFXq7iGgHTegDaAhHQKhLB4tYjjd1fZQoaAZHQGBJAEMb3oNoB03oA2gIR0CoS8glWwNcdX2UKGgGR0BwRUByS3b3aAdNdAFoCEdAqFdSiM5wO3V9lChoBkdAUkmC4Bmwq2gHS+BoCEdAqFxNVcUuc3V9lChoBkdAXrp7a7EpAmgHTegDaAhHQKhfBYL9deJ1fZQoaAZHQGJY1Ed/8VJoB03oA2gIR0CoXyx0lqrSdX2UKGgGR0BjHmsYEW69aAdN6ANoCEdAqGGVTgl4T3V9lChoBkdAYwrZL7Gec2gHTegDaAhHQKhrMagElmh1fZQoaAZHQG513Qla8pVoB00LAmgIR0CobLulGgBcdX2UKGgGR0BvoGA/cFhYaAdN6gJoCEdAqG8yvmoze3V9lChoBkdAZhvvsqril2gHTegDaAhHQKh+OgL7XQN1fZQoaAZHQGM6Q1rIo3JoB03oA2gIR0CofuWXC0ngdX2UKGgGR0BgLhx3mmtRaAdN6ANoCEdAqIDf114gR3V9lChoBkdAYGh4REnb7GgHTegDaAhHQKiEtBEa2nd1fZQoaAZHQGPK2eYlY2doB03oA2gIR0CoijJxFRYSdX2UKGgGR0Bh4OpGWldkaAdN6ANoCEdAqJbcORT0hHV9lChoBkdAZU+M1CPZI2gHTegDaAhHQKiaATQmeDp1fZQoaAZHQHDQ/+jua4NoB020AmgIR0ConCJDVpbmdX2UKGgGR0Bjd2lyimEXaAdN6ANoCEdAqKEKQPqcE3V9lChoBkdAYDaFbFCLM2gHTegDaAhHQKiuEQJ5VwR1fZQoaAZHQGJuVBMSK3xoB03oA2gIR0Cotaw/xDsudX2UKGgGR0Bl/MYXO4XoaAdN6ANoCEdAqLXUWykbgnV9lChoBkdAZzEydFvyb2gHTegDaAhHQKi4R1DBuXN1fZQoaAZHQHDAl6Rhc7hoB01rAWgIR0CovHYbbUPQdX2UKGgGR0Bl/pU70WdmaAdN6ANoCEdAqMGjrRjSX3V9lChoBkdAZRQ39aUzK2gHTegDaAhHQKjDEkVN5+p1fZQoaAZHQGUCfRE4NqhoB03oA2gIR0CoxV7D/EOzdX2UKGgGR0Bld9dAxBVuaAdN6ANoCEdAqNM5L7Gec3V9lChoBkdAcU/jY7JXAGgHTRMDaAhHQKjTlFXq7iB1fZQoaAZHQF/0AG0NSZVoB03oA2gIR0Co0904zabndX2UKGgGR0Bld/eLvTgEaAdN6ANoCEdAqNWRrcj7h3V9lChoBkdAYwcGeMAFPmgHTegDaAhHQKjY2kMTewd1fZQoaAZHQHAG48lolD5oB03yAWgIR0Co2UyM98qndX2UKGgGR0Bhf+Idlum8aAdN6ANoCEdAqN2MyLyc1HV9lChoBkdAZQjIT4+KTGgHTegDaAhHQKjeddJrcj91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.19.0-45-generic-x86_64-with-glibc2.31 # 46~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Jun 7 15:06:04 UTC 20", "Python": "3.9.16", "Stable-Baselines3": "2.0.0a5", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.23.4", "Cloudpickle": "2.2.0", "Gymnasium": "0.28.1"}}
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a99472840>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a994728e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a99472980>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a99472a20>", "_build": "<function ActorCriticPolicy._build at 0x7f1a99472ac0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1a99472b60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a99472c00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a99472ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1a99472d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a99472de0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a99472e80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a99472f20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1a99475040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701613917454831634, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADambwp2GK6fMsPu0+KJbb+pvS5C9iXNQAAgD8AAIA/mgqSPXu6grpWc+o6BtDGNY3eSbqwdga6AACAPwAAgD+mYOg9z/8uP3jhFb3KlK2+xa9yvPrWlDwAAAAAAAAAAJMVWL7aFDc/bSz5PTpuZ76jfI29IfvBPQAAAAAAAAAAJoe5vUh3hboWbS+6c67qtCkWjjo9Xks5AAAAAAAAgD+aExC8oiKrPr2nab1Ow3++KI5DvTsYkT0AAAAAAAAAAOaz2b2QD7Q+Gco4PrHxab5/E5M9O1lNPQAAAAAAAAAATXQ6PY8uY7qQ9M66VXjEtcBrQrlG4/I5AACAPwAAgD+aeS49FNiJuvijbbmL20O0BNdqOoD1iTgAAIA/AACAPzN7TDupgag/0DqzPIUkqr7pSvA7jmwsvQAAAAAAAAAAzfJovSlIGroW8rW3bbefsgUEGDrt89g2AACAPwAAgD8AQKY82WuYPx7BiD2dT5m+lO8KuyVEED0AAAAAAAAAADN/8LspEEO6yCqgOg0v+TU32lg6WtO6uQAAgD8AAIA/pqa/PVBZrT5hHAy9jcw5vjZ2ML0AgFU9AAAAAAAAAAAA9Q8+HcPJPi2QR75++KO+RxVQvUPCgr0AAAAAAAAAABohfb32tGm63NKbOom/jzW60uA6t9WzuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQ5Shi9ZieMAWyUTegDjAF0lEdApuILtNSIg3V9lChoBkdAZdrmOEM9bGgHTegDaAhHQKbpRcIJJGx1fZQoaAZHQGOO4VqN6xBoB03oA2gIR0Cm81KW1MM7dX2UKGgGR0BlqKHTI/7jaAdN6ANoCEdApvYX+hoM8nV9lChoBkdAZP2n3ta6jGgHTegDaAhHQKcAzcMVk+Z1fZQoaAZHQF8a+hGpdbBoB03oA2gIR0CnAecMVk+YdX2UKGgGR0BlLvIbOu7paAdN6ANoCEdApxcNxZMcqHV9lChoBkdAZZP9UCJXQ2gHTegDaAhHQKcZTXNke6t1fZQoaAZHQGGPJ9qk/KRoB03oA2gIR0CnHB3zcynDdX2UKGgGR0BijMMTewcHaAdN6ANoCEdApyhSf16E8XV9lChoBkdAZB1x5s0pE2gHTegDaAhHQKcuXVS4vvl1fZQoaAZHQHIEwe3hGYtoB03FAmgIR0CnL39uYQardX2UKGgGR0BeVDvAoG6gaAdN6ANoCEdApzLZ26kIonV9lChoBkdAZwnWI42jwmgHTegDaAhHQKc1bmdy1eB1fZQoaAZHQGM0qwY+B6NoB03oA2gIR0CnOc52pyZKdX2UKGgGR0BizXlKbrkbaAdN6ANoCEdApzomdPLxJHV9lChoBkdAYtmEqUeMh2gHTegDaAhHQKc65ELH+611fZQoaAZHQGBXL+PzWf9oB03oA2gIR0CnPCw3o9s8dX2UKGgGR0Bhj2oYNy5qaAdN6ANoCEdAp00ozJp35nV9lChoBkdAX0fGbTc7AGgHTegDaAhHQKdQBznRsuZ1fZQoaAZHQGVOcer+5vtoB03oA2gIR0CnWxYMfA9FdX2UKGgGR0BmagAdXDFZaAdN6ANoCEdAp1wt50KZ2XV9lChoBkdAcFc4Hoouw2gHTasCaAhHQKdw0gf2bod1fZQoaAZHQGIU3PZ7HABoB03oA2gIR0CncZHlGPPtdX2UKGgGR0Bj0FCLMs6JaAdN6ANoCEdAp3PDnJT2nXV9lChoBkdAZSdszl90BGgHTegDaAhHQKd2bhjOLR91fZQoaAZHQF97KzzErG1oB03oA2gIR0Cnd7k0Jng6dX2UKGgGR0BgASnk1dgOaAdN6ANoCEdAp4gqz/p+t3V9lChoBkdAZ4sm51/2CmgHTegDaAhHQKeJT9tuUEB1fZQoaAZHQGJyywwCbMJoB03oA2gIR0CnjKrT6SDAdX2UKGgGR0BmzFmxt52RaAdN6ANoCEdAp49AIF/x2HV9lChoBkdAZrIhFEy+H2gHTegDaAhHQKeT+oQ4CIV1fZQoaAZHQGDv1HnU2DRoB03oA2gIR0CnlMLy1/lRdX2UKGgGR0BnltDIBBAwaAdN6ANoCEdAp5YpgkTpPnV9lChoBkdAUTXxXnyNGWgHS+xoCEdAp6iHDm8ujHV9lChoBkdAYUWQ8wHqvGgHTegDaAhHQKeotBTGYKJ1fZQoaAZHQGalYEwFkhBoB03oA2gIR0Cnq4gdfb9IdX2UKGgGR0BjIs5CF9KFaAdN6ANoCEdAp7ZvxH5JsnV9lChoBkdAYi8GRmseXGgHTegDaAhHQKe3hWsijcp1fZQoaAZHQGTe9Zid8RdoB03oA2gIR0Cny+wg9vCNdX2UKGgGR0BgxbLpzLfUaAdN6ANoCEdAp8yo1zhgmnV9lChoBkdAZMEoWHk92WgHTegDaAhHQKfOxx1gYxd1fZQoaAZHQGJFKHwgDA9oB03oA2gIR0Cn0XTNliBodX2UKGgGR0BmN8TSLIgeaAdN6ANoCEdAp9LGmrKeTXV9lChoBkdAZaENb1RLsmgHTegDaAhHQKfkGHSnccl1fZQoaAZHQGJSwAlv60poB03oA2gIR0Cn5UgrpaA4dX2UKGgGR0BlTTB2wFC+aAdN6ANoCEdAp+ics+V1OnV9lChoBkdAYi3VOsT37GgHTegDaAhHQKfrShY/3WZ1fZQoaAZHQGdwgy2x6fJoB03oA2gIR0Cn8AqwhW5pdX2UKGgGR0BmK91fVqetaAdN6ANoCEdAp/DW/1xsEnV9lChoBkdAZzAjafzz3GgHTegDaAhHQKgFO1OTJQt1fZQoaAZHQGNvcfFJg9hoB03oA2gIR0CoBWhP9DQadX2UKGgGR0BjTPC66J66aAdN6ANoCEdAqAhLhLoOhHV9lChoBkdAZztAzHjp92gHTegDaAhHQKgTR84xUNt1fZQoaAZHQGdQ0DuBtk5oB03oA2gIR0CoFF/ZmI0qdX2UKGgGR0Bkq/QY1pCbaAdN6ANoCEdAqCh7GT9sJ3V9lChoBkdAY4oZiNKh+WgHTegDaAhHQKgpOl41P311fZQoaAZHQGITXarWAgBoB03oA2gIR0CoK2WKdhAodX2UKGgGR0Bl7mFev6j4aAdN6ANoCEdAqC4l0zTF2nV9lChoBkdAZS4saKk2xmgHTegDaAhHQKgvj5t3wCt1fZQoaAZHQG2cPOQhfShoB01iAWgIR0CoMsyYoiLVdX2UKGgGR0BhzpfBvaUSaAdN6ANoCEdAqEAQbuMMqnV9lChoBkdAY94VZ9uxbGgHTegDaAhHQKhBILvTgEV1fZQoaAZHQGVUbyQPqcFoB03oA2gIR0CoRDg5BC2MdX2UKGgGR0BgPLe9Ba9saAdN6ANoCEdAqEafpwCKaXV9lChoBkdAY0sZFXq7iGgHTegDaAhHQKhLB4tYjjd1fZQoaAZHQGBJAEMb3oNoB03oA2gIR0CoS8glWwNcdX2UKGgGR0BwRUByS3b3aAdNdAFoCEdAqFdSiM5wO3V9lChoBkdAUkmC4Bmwq2gHS+BoCEdAqFxNVcUuc3V9lChoBkdAXrp7a7EpAmgHTegDaAhHQKhfBYL9deJ1fZQoaAZHQGJY1Ed/8VJoB03oA2gIR0CoXyx0lqrSdX2UKGgGR0BjHmsYEW69aAdN6ANoCEdAqGGVTgl4T3V9lChoBkdAYwrZL7Gec2gHTegDaAhHQKhrMagElmh1fZQoaAZHQG513Qla8pVoB00LAmgIR0CobLulGgBcdX2UKGgGR0BvoGA/cFhYaAdN6gJoCEdAqG8yvmoze3V9lChoBkdAZhvvsqril2gHTegDaAhHQKh+OgL7XQN1fZQoaAZHQGM6Q1rIo3JoB03oA2gIR0CofuWXC0ngdX2UKGgGR0BgLhx3mmtRaAdN6ANoCEdAqIDf114gR3V9lChoBkdAYGh4REnb7GgHTegDaAhHQKiEtBEa2nd1fZQoaAZHQGPK2eYlY2doB03oA2gIR0CoijJxFRYSdX2UKGgGR0Bh4OpGWldkaAdN6ANoCEdAqJbcORT0hHV9lChoBkdAZU+M1CPZI2gHTegDaAhHQKiaATQmeDp1fZQoaAZHQHDQ/+jua4NoB020AmgIR0ConCJDVpbmdX2UKGgGR0Bjd2lyimEXaAdN6ANoCEdAqKEKQPqcE3V9lChoBkdAYDaFbFCLM2gHTegDaAhHQKiuEQJ5VwR1fZQoaAZHQGJuVBMSK3xoB03oA2gIR0Cotaw/xDsudX2UKGgGR0Bl/MYXO4XoaAdN6ANoCEdAqLXUWykbgnV9lChoBkdAZzEydFvyb2gHTegDaAhHQKi4R1DBuXN1fZQoaAZHQHDAl6Rhc7hoB01rAWgIR0CovHYbbUPQdX2UKGgGR0Bl/pU70WdmaAdN6ANoCEdAqMGjrRjSX3V9lChoBkdAZRQ39aUzK2gHTegDaAhHQKjDEkVN5+p1fZQoaAZHQGUCfRE4NqhoB03oA2gIR0CoxV7D/EOzdX2UKGgGR0Bld9dAxBVuaAdN6ANoCEdAqNM5L7Gec3V9lChoBkdAcU/jY7JXAGgHTRMDaAhHQKjTlFXq7iB1fZQoaAZHQF/0AG0NSZVoB03oA2gIR0Co0904zabndX2UKGgGR0Bld/eLvTgEaAdN6ANoCEdAqNWRrcj7h3V9lChoBkdAYwcGeMAFPmgHTegDaAhHQKjY2kMTewd1fZQoaAZHQHAG48lolD5oB03yAWgIR0Co2UyM98qndX2UKGgGR0Bhf+Idlum8aAdN6ANoCEdAqN2MyLyc1HV9lChoBkdAZQjIT4+KTGgHTegDaAhHQKjeddJrcj91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVtwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIwiL3RtcC9pcHlrZXJuZWxfMTIzOTgvMTMzOTY0MTk0Ni5weZSMCDxsYW1iZGE+lGgNSw1DBoAAoEOAAJRDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGUvaG9tZS9oZWRkZXJpY2gvLnB5ZW52L3ZlcnNpb25zLzMuMTEuMy9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGUvaG9tZS9oZWRkZXJpY2gvLnB5ZW52L3ZlcnNpb25zLzMuMTEuMy9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.5.6-76060506-generic-x86_64-with-glibc2.35 # 202310061235~1697396945~22.04~9283e32 SMP PREEMPT_DYNAMIC Sun O", "Python": "3.11.3", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.1+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e47c55876e7235fb38dbcbd8a57d913839c102c55b77cff0c2e5a89aba230dc
|
| 3 |
+
size 147955
|
ppo-LunarLander-v2/data
CHANGED
|
@@ -4,20 +4,20 @@
|
|
| 4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
| 8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
| 9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
| 10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
| 11 |
-
"_build": "<function ActorCriticPolicy._build at
|
| 12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
| 13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
| 14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
| 15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
| 16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
| 17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
| 18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
| 19 |
"__abstractmethods__": "frozenset()",
|
| 20 |
-
"_abc_impl": "<_abc._abc_data object at
|
| 21 |
},
|
| 22 |
"verbose": 1,
|
| 23 |
"policy_kwargs": {},
|
|
@@ -27,7 +27,7 @@
|
|
| 27 |
"seed": null,
|
| 28 |
"action_noise": null,
|
| 29 |
"start_time": 1701613917454831634,
|
| 30 |
-
"learning_rate": 0.
|
| 31 |
"tensorboard_log": null,
|
| 32 |
"_last_obs": {
|
| 33 |
":type:": "<class 'numpy.ndarray'>",
|
|
@@ -52,9 +52,24 @@
|
|
| 52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
},
|
| 54 |
"_n_updates": 248,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
"observation_space": {
|
| 56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
-
":serialized:": "
|
| 58 |
"dtype": "float32",
|
| 59 |
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
"bounded_above": "[ True True True True True True True True]",
|
|
@@ -69,7 +84,7 @@
|
|
| 69 |
},
|
| 70 |
"action_space": {
|
| 71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
-
":serialized:": "
|
| 73 |
"n": "4",
|
| 74 |
"start": "0",
|
| 75 |
"_shape": [],
|
|
@@ -77,23 +92,8 @@
|
|
| 77 |
"_np_random": null
|
| 78 |
},
|
| 79 |
"n_envs": 16,
|
| 80 |
-
"n_steps": 1024,
|
| 81 |
-
"gamma": 0.999,
|
| 82 |
-
"gae_lambda": 0.98,
|
| 83 |
-
"ent_coef": 0.01,
|
| 84 |
-
"vf_coef": 0.5,
|
| 85 |
-
"max_grad_norm": 0.5,
|
| 86 |
-
"batch_size": 64,
|
| 87 |
-
"n_epochs": 4,
|
| 88 |
-
"clip_range": {
|
| 89 |
-
":type:": "<class 'function'>",
|
| 90 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 91 |
-
},
|
| 92 |
-
"clip_range_vf": null,
|
| 93 |
-
"normalize_advantage": true,
|
| 94 |
-
"target_kl": null,
|
| 95 |
"lr_schedule": {
|
| 96 |
":type:": "<class 'function'>",
|
| 97 |
-
":serialized:": "
|
| 98 |
}
|
| 99 |
}
|
|
|
|
| 4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
"__module__": "stable_baselines3.common.policies",
|
| 6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a99472840>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a994728e0>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a99472980>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a99472a20>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1a99472ac0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1a99472b60>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a99472c00>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a99472ca0>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1a99472d40>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a99472de0>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a99472e80>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a99472f20>",
|
| 19 |
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1a99475040>"
|
| 21 |
},
|
| 22 |
"verbose": 1,
|
| 23 |
"policy_kwargs": {},
|
|
|
|
| 27 |
"seed": null,
|
| 28 |
"action_noise": null,
|
| 29 |
"start_time": 1701613917454831634,
|
| 30 |
+
"learning_rate": 0.0,
|
| 31 |
"tensorboard_log": null,
|
| 32 |
"_last_obs": {
|
| 33 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
|
| 52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
},
|
| 54 |
"_n_updates": 248,
|
| 55 |
+
"n_steps": 1024,
|
| 56 |
+
"gamma": 0.999,
|
| 57 |
+
"gae_lambda": 0.98,
|
| 58 |
+
"ent_coef": 0.01,
|
| 59 |
+
"vf_coef": 0.5,
|
| 60 |
+
"max_grad_norm": 0.5,
|
| 61 |
+
"batch_size": 64,
|
| 62 |
+
"n_epochs": 4,
|
| 63 |
+
"clip_range": {
|
| 64 |
+
":type:": "<class 'function'>",
|
| 65 |
+
":serialized:": "gAWVtwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIwiL3RtcC9pcHlrZXJuZWxfMTIzOTgvMTMzOTY0MTk0Ni5weZSMCDxsYW1iZGE+lGgNSw1DBoAAoEOAAJRDAJQpKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OTnSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 66 |
+
},
|
| 67 |
+
"clip_range_vf": null,
|
| 68 |
+
"normalize_advantage": true,
|
| 69 |
+
"target_kl": null,
|
| 70 |
"observation_space": {
|
| 71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
| 73 |
"dtype": "float32",
|
| 74 |
"bounded_below": "[ True True True True True True True True]",
|
| 75 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
|
| 84 |
},
|
| 85 |
"action_space": {
|
| 86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
| 88 |
"n": "4",
|
| 89 |
"start": "0",
|
| 90 |
"_shape": [],
|
|
|
|
| 92 |
"_np_random": null
|
| 93 |
},
|
| 94 |
"n_envs": 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
"lr_schedule": {
|
| 96 |
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGUvaG9tZS9oZWRkZXJpY2gvLnB5ZW52L3ZlcnNpb25zLzMuMTEuMy9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGUvaG9tZS9oZWRkZXJpY2gvLnB5ZW52L3ZlcnNpb25zLzMuMTEuMy9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURwAAAAAAAAAAhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 98 |
}
|
| 99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bd914f3ea650d96f939ae1e7e9424c7817ad34e9b95fd83d175ba74570452db2
|
| 3 |
+
size 88490
|
ppo-LunarLander-v2/policy.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5ff4a3c6d917056c7178d853a3c93b42647a383365157d14aac1ac18f73b4ca4
|
| 3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
| 3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
-
- OS: Linux-5.
|
| 2 |
-
- Python: 3.
|
| 3 |
- Stable-Baselines3: 2.0.0a5
|
| 4 |
-
- PyTorch: 1.
|
| 5 |
- GPU Enabled: True
|
| 6 |
-
- Numpy: 1.23.
|
| 7 |
-
- Cloudpickle:
|
| 8 |
- Gymnasium: 0.28.1
|
|
|
|
| 1 |
+
- OS: Linux-6.5.6-76060506-generic-x86_64-with-glibc2.35 # 202310061235~1697396945~22.04~9283e32 SMP PREEMPT_DYNAMIC Sun O
|
| 2 |
+
- Python: 3.11.3
|
| 3 |
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.1.1+cu121
|
| 5 |
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.23.5
|
| 7 |
+
- Cloudpickle: 3.0.0
|
| 8 |
- Gymnasium: 0.28.1
|
results.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"mean_reward":
|
|
|
|
| 1 |
+
{"mean_reward": 247.29962300000003, "std_reward": 13.573991558396504, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-03T17:18:46.196036"}
|