FallenMerick commited on
Commit
aa82052
1 Parent(s): 86dcab1

Upload results_2024-06-28T04-32-22.127106.json

Browse files
Sao10K__Fimbulvetr-11B-v2/results_2024-06-28T04-32-22.127106.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.68123879705238,
5
+ "acc_stderr,none": 0.004650438781745276,
6
+ "acc_norm,none": 0.8660625373431587,
7
+ "acc_norm_stderr,none": 0.003398890525229556,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 70.00837363646892,
12
+ "eqbench_stderr,none": 2.230997557081673,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374293,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Sao10K/Fimbulvetr-11B-v2",
128
+ "model_num_parameters": 10731524096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "b2dcd534dc3a53ff84e60a53b87816185169be19",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 16
135
+ ],
136
+ "device": "cuda:0",
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719546844.0477293,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 4096,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Sao10K/Fimbulvetr-11B-v2",
168
+ "model_name_sanitized": "Sao10K__Fimbulvetr-11B-v2",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 99227.279509843,
175
+ "end_time": 101532.191916139,
176
+ "total_evaluation_time_seconds": "2304.912406295989"
177
+ }