FallenMerick
commited on
Upload folder using huggingface_hub
Browse files- .__Models__SciPhi-Mistral-7B-32k/results_2024-07-02T19-17-44.679074.json +177 -0
- .__Models__cognitivecomputations__samantha-mistral-instruct-7b/results_2024-07-02T19-23-24.931098.json +177 -0
- Crimvael__Raphael-7B/results_2024-07-02T03-45-26.455365.json +177 -0
- Delcos__Mistral-Pygmalion-7b/results_2024-07-02T07-11-52.058605.json +177 -0
- HuggingFaceH4__zephyr-7b-beta/results_2024-07-02T05-33-39.653334.json +177 -0
- KatyTheCutie__LemonadeRP-4.5.3/results_2024-07-02T08-08-46.956689.json +177 -0
- Norquinal__Mistral-7B-claude-chat/results_2024-07-02T07-25-06.524375.json +177 -0
- NousResearch__Nous-Capybara-7B-V1.9/results_2024-07-02T07-40-59.772360.json +177 -0
- SanjiWatsuki__Kunoichi-7B/results_2024-07-02T06-27-22.305698.json +177 -0
- SanjiWatsuki__Loyal-Macaroni-Maid-7B/results_2024-07-02T06-14-04.529485.json +177 -0
- SanjiWatsuki__Silicon-Maid-7B/results_2024-07-02T06-55-56.426785.json +177 -0
- TeeZee__DarkSapling-7B-v2.0/results_2024-07-02T03-18-06.078821.json +177 -0
- argilla__CapybaraHermes-2.5-Mistral-7B/results_2024-07-02T04-12-24.235824.json +177 -0
- berkeley-nest__Starling-LM-7B-alpha/results_2024-07-02T05-17-10.530751.json +177 -0
- cgato__Thespis-Mistral-7b-v0.6/results_2024-07-02T03-55-19.886617.json +177 -0
- chargoddard__loyal-piano-m7/results_2024-07-02T04-51-42.336742.json +177 -0
- cognitivecomputations__dolphin-2.2.1-mistral-7b/results_2024-07-02T06-02-40.816103.json +177 -0
- cognitivecomputations__dolphin-2.6-mistral-7b-dpo-laser/results_2024-07-02T04-21-44.877903.json +177 -0
- head-empty-ai__Mytho-Lemon-11B/results_2024-07-02T03-27-57.446245.json +177 -0
- maywell__Synatra-7B-v0.3-RP/results_2024-07-02T06-46-15.142587.json +177 -0
- mistralai__Mistral-7B-Instruct-v0.1/results_2024-07-02T04-41-17.557455.json +177 -0
- mistralai__Mistral-7B-Instruct-v0.2/results_2024-07-02T05-07-32.922766.json +177 -0
- teknium__Hermes-Trismegistus-Mistral-7B/results_2024-07-02T05-46-44.024042.json +177 -0
.__Models__SciPhi-Mistral-7B-32k/results_2024-07-02T19-17-44.679074.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.5982871937860984,
|
5 |
+
"acc_stderr,none": 0.004892425356375702,
|
6 |
+
"acc_norm,none": 0.7794264090818562,
|
7 |
+
"acc_norm_stderr,none": 0.004137860370785822,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 27.39318854829527,
|
12 |
+
"eqbench_stderr,none": 3.215602271541554,
|
13 |
+
"percent_parseable,none": 88.88888888888889,
|
14 |
+
"percent_parseable_stderr,none": 2.41033842020729,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=./Models/SciPhi-Mistral-7B-32k",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719946299.4443362,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.42.3",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "./Models/SciPhi-Mistral-7B-32k",
|
168 |
+
"model_name_sanitized": ".__Models__SciPhi-Mistral-7B-32k",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 157594.499625904,
|
175 |
+
"end_time": 159166.6084983,
|
176 |
+
"total_evaluation_time_seconds": "1572.1088723959983"
|
177 |
+
}
|
.__Models__cognitivecomputations__samantha-mistral-instruct-7b/results_2024-07-02T19-23-24.931098.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.5549691296554471,
|
5 |
+
"acc_stderr,none": 0.004959535443170614,
|
6 |
+
"acc_norm,none": 0.7365066719776937,
|
7 |
+
"acc_norm_stderr,none": 0.004396273173717414,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 18.697258501455963,
|
12 |
+
"eqbench_stderr,none": 3.7651200808947474,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=./Models/cognitivecomputations/samantha-mistral-instruct-7b",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719946631.0748322,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.42.3",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "./Models/cognitivecomputations/samantha-mistral-instruct-7b",
|
168 |
+
"model_name_sanitized": ".__Models__cognitivecomputations__samantha-mistral-instruct-7b",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 157926.171562761,
|
175 |
+
"end_time": 159506.860535868,
|
176 |
+
"total_evaluation_time_seconds": "1580.6889731069969"
|
177 |
+
}
|
Crimvael__Raphael-7B/results_2024-07-02T03-45-26.455365.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6527584146584345,
|
5 |
+
"acc_stderr,none": 0.004751203378888043,
|
6 |
+
"acc_norm,none": 0.8346942840071699,
|
7 |
+
"acc_norm_stderr,none": 0.0037069708564110657,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 68.72823492962466,
|
12 |
+
"eqbench_stderr,none": 2.1836213516902125,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=Crimvael/Raphael-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "c5a262bacfaf9f4a822954223462f428f7cb6290",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719890419.8683555,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 8192,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "Crimvael/Raphael-7B",
|
168 |
+
"model_name_sanitized": "Crimvael__Raphael-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 101714.859551874,
|
175 |
+
"end_time": 103228.384796742,
|
176 |
+
"total_evaluation_time_seconds": "1513.5252448679967"
|
177 |
+
}
|
Delcos__Mistral-Pygmalion-7b/results_2024-07-02T07-11-52.058605.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.571400119498108,
|
5 |
+
"acc_stderr,none": 0.004938643787869521,
|
6 |
+
"acc_norm,none": 0.7660824536944831,
|
7 |
+
"acc_norm_stderr,none": 0.004224552134436904,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 17.344080969420517,
|
12 |
+
"eqbench_stderr,none": 3.6133795461572396,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=Delcos/Mistral-Pygmalion-7b,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 6738415616,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "2cf8706d62541ba6d647562055cdc08bc70500a1",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
32
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719902850.114841,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 4096,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "Delcos/Mistral-Pygmalion-7b",
|
168 |
+
"model_name_sanitized": "Delcos__Mistral-Pygmalion-7b",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 114145.16115359,
|
175 |
+
"end_time": 115613.988031289,
|
176 |
+
"total_evaluation_time_seconds": "1468.8268776990008"
|
177 |
+
}
|
HuggingFaceH4__zephyr-7b-beta/results_2024-07-02T05-33-39.653334.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6398127862975503,
|
5 |
+
"acc_stderr,none": 0.0047907346837046125,
|
6 |
+
"acc_norm,none": 0.8201553475403306,
|
7 |
+
"acc_norm_stderr,none": 0.0038327310175919993,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 58.1357621766725,
|
12 |
+
"eqbench_stderr,none": 2.8035833778342916,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=HuggingFaceH4/zephyr-7b-beta,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "b70e0c9a2d9e14bd1e812d3c398e5f313e93b473",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719896897.7463036,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"</s>",
|
153 |
+
2
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "HuggingFaceH4/zephyr-7b-beta",
|
168 |
+
"model_name_sanitized": "HuggingFaceH4__zephyr-7b-beta",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 108192.842263836,
|
175 |
+
"end_time": 109721.582768754,
|
176 |
+
"total_evaluation_time_seconds": "1528.7405049179943"
|
177 |
+
}
|
KatyTheCutie__LemonadeRP-4.5.3/results_2024-07-02T08-08-46.956689.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6444931288587931,
|
5 |
+
"acc_stderr,none": 0.004776883632722606,
|
6 |
+
"acc_norm,none": 0.8265285799641505,
|
7 |
+
"acc_norm_stderr,none": 0.0037788044746058284,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 63.22759969511479,
|
12 |
+
"eqbench_stderr,none": 2.4086520534332245,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=KatyTheCutie/LemonadeRP-4.5.3,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "3f2309618a48035253889f01d4df2d7f1e81b730",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719906146.1677766,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "KatyTheCutie/LemonadeRP-4.5.3",
|
168 |
+
"model_name_sanitized": "KatyTheCutie__LemonadeRP-4.5.3",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 117441.278859038,
|
175 |
+
"end_time": 119028.886089565,
|
176 |
+
"total_evaluation_time_seconds": "1587.6072305270063"
|
177 |
+
}
|
Norquinal__Mistral-7B-claude-chat/results_2024-07-02T07-25-06.524375.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6319458275243975,
|
5 |
+
"acc_stderr,none": 0.004812905279066437,
|
6 |
+
"acc_norm,none": 0.8306114319856602,
|
7 |
+
"acc_norm_stderr,none": 0.003743281749373698,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 16.33570389924275,
|
12 |
+
"eqbench_stderr,none": 2.9383702981155455,
|
13 |
+
"percent_parseable,none": 99.41520467836257,
|
14 |
+
"percent_parseable_stderr,none": 0.5847953216374279,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=Norquinal/Mistral-7B-claude-chat,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "781aa96659a06a1c70fb1f27f68c7db3f5ab760e",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719903556.2722895,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "Norquinal/Mistral-7B-claude-chat",
|
168 |
+
"model_name_sanitized": "Norquinal__Mistral-7B-claude-chat",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 114851.308841458,
|
175 |
+
"end_time": 116408.453788708,
|
176 |
+
"total_evaluation_time_seconds": "1557.1449472499953"
|
177 |
+
}
|
NousResearch__Nous-Capybara-7B-V1.9/results_2024-07-02T07-40-59.772360.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6075482971519618,
|
5 |
+
"acc_stderr,none": 0.004872984492967986,
|
6 |
+
"acc_norm,none": 0.7870942043417646,
|
7 |
+
"acc_norm_stderr,none": 0.004085249783499773,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 19.249537416299493,
|
12 |
+
"eqbench_stderr,none": 3.5871216396534114,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=NousResearch/Nous-Capybara-7B-V1.9,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "ea08e10fb568f676e19e810d11d4a5ee6b3f02b3",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719904544.6768596,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"</s>",
|
153 |
+
2
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "NousResearch/Nous-Capybara-7B-V1.9",
|
168 |
+
"model_name_sanitized": "NousResearch__Nous-Capybara-7B-V1.9",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 115839.811088593,
|
175 |
+
"end_time": 117361.70177151,
|
176 |
+
"total_evaluation_time_seconds": "1521.890682917001"
|
177 |
+
}
|
SanjiWatsuki__Kunoichi-7B/results_2024-07-02T06-27-22.305698.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6803425612427804,
|
5 |
+
"acc_stderr,none": 0.004653907471785688,
|
6 |
+
"acc_norm,none": 0.8525194184425413,
|
7 |
+
"acc_norm_stderr,none": 0.003538596773704852,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 72.35673723130577,
|
12 |
+
"eqbench_stderr,none": 1.842888264461036,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=SanjiWatsuki/Kunoichi-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "b2c23b9d0036e6e74e5f61de74776e9091956c83",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719900175.0852504,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 8192,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "SanjiWatsuki/Kunoichi-7B",
|
168 |
+
"model_name_sanitized": "SanjiWatsuki__Kunoichi-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 111470.107385929,
|
175 |
+
"end_time": 112944.23512605,
|
176 |
+
"total_evaluation_time_seconds": "1474.1277401209954"
|
177 |
+
}
|
SanjiWatsuki__Loyal-Macaroni-Maid-7B/results_2024-07-02T06-14-04.529485.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6699860585540729,
|
5 |
+
"acc_stderr,none": 0.004692567655961757,
|
6 |
+
"acc_norm,none": 0.8453495319657439,
|
7 |
+
"acc_norm_stderr,none": 0.0036083220651419597,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 73.66931196891234,
|
12 |
+
"eqbench_stderr,none": 1.6676417973789068,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=SanjiWatsuki/Loyal-Macaroni-Maid-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "831837e474f6c474f68f3c31a62ef7eb01b9f5b7",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719899408.9462144,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 8192,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "SanjiWatsuki/Loyal-Macaroni-Maid-7B",
|
168 |
+
"model_name_sanitized": "SanjiWatsuki__Loyal-Macaroni-Maid-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 110704.019752883,
|
175 |
+
"end_time": 112146.458918638,
|
176 |
+
"total_evaluation_time_seconds": "1442.4391657550004"
|
177 |
+
}
|
SanjiWatsuki__Silicon-Maid-7B/results_2024-07-02T06-55-56.426785.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6676956781517626,
|
5 |
+
"acc_stderr,none": 0.0047007677417355885,
|
6 |
+
"acc_norm,none": 0.8455486954789883,
|
7 |
+
"acc_norm_stderr,none": 0.0036064226236399086,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 68.74376746724828,
|
12 |
+
"eqbench_stderr,none": 1.9296099363146424,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=SanjiWatsuki/Silicon-Maid-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "4e43d81f3fff1091df7cb2d85e9e306d25235701",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719901923.6482406,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 8192,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "SanjiWatsuki/Silicon-Maid-7B",
|
168 |
+
"model_name_sanitized": "SanjiWatsuki__Silicon-Maid-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 113218.750420381,
|
175 |
+
"end_time": 114658.35620432,
|
176 |
+
"total_evaluation_time_seconds": "1439.6057839390123"
|
177 |
+
}
|
TeeZee__DarkSapling-7B-v2.0/results_2024-07-02T03-18-06.078821.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.637024497112129,
|
5 |
+
"acc_stderr,none": 0.0047987512815608575,
|
6 |
+
"acc_norm,none": 0.8256323441545509,
|
7 |
+
"acc_norm_stderr,none": 0.0037864988567691974,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 62.191078817329824,
|
12 |
+
"eqbench_stderr,none": 2.466355668906657,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=TeeZee/DarkSapling-7B-v2.0,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241748480,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "0290b688e6aa6620f88ead6903487078ab24f96c",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719888689.565892,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "TeeZee/DarkSapling-7B-v2.0",
|
168 |
+
"model_name_sanitized": "TeeZee__DarkSapling-7B-v2.0",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 99984.687478048,
|
175 |
+
"end_time": 101588.008165402,
|
176 |
+
"total_evaluation_time_seconds": "1603.320687354004"
|
177 |
+
}
|
argilla__CapybaraHermes-2.5-Mistral-7B/results_2024-07-02T04-12-24.235824.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.648177653853814,
|
5 |
+
"acc_stderr,none": 0.004765629263643518,
|
6 |
+
"acc_norm,none": 0.8303126867157936,
|
7 |
+
"acc_norm_stderr,none": 0.0037459074237766016,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 66.52043170781761,
|
12 |
+
"eqbench_stderr,none": 2.1880719529261583,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=argilla/CapybaraHermes-2.5-Mistral-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241748480,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "d06c86726aadd8dadb92c5b9b9e3ce8ef246c471",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719891965.445841,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"<|im_end|>",
|
157 |
+
32000
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 32000,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "argilla/CapybaraHermes-2.5-Mistral-7B",
|
168 |
+
"model_name_sanitized": "argilla__CapybaraHermes-2.5-Mistral-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 103260.591614457,
|
175 |
+
"end_time": 104846.165257457,
|
176 |
+
"total_evaluation_time_seconds": "1585.5736430000106"
|
177 |
+
}
|
berkeley-nest__Starling-LM-7B-alpha/results_2024-07-02T05-17-10.530751.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.642899820752838,
|
5 |
+
"acc_stderr,none": 0.004781654610857148,
|
6 |
+
"acc_norm,none": 0.8217486556462856,
|
7 |
+
"acc_norm_stderr,none": 0.0038194200585540956,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 69.78303111392624,
|
12 |
+
"eqbench_stderr,none": 2.1554319334518173,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=berkeley-nest/Starling-LM-7B-alpha,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241748480,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "1dddf3b95bc1391f6307299eb1c162c194bde9bd",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719895983.4735777,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<|end_of_turn|>",
|
153 |
+
32000
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"<|end_of_turn|>",
|
157 |
+
32000
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 32000,
|
164 |
+
"max_length": 8192,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "berkeley-nest/Starling-LM-7B-alpha",
|
168 |
+
"model_name_sanitized": "berkeley-nest__Starling-LM-7B-alpha",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 107278.552702596,
|
175 |
+
"end_time": 108732.460166266,
|
176 |
+
"total_evaluation_time_seconds": "1453.9074636699952"
|
177 |
+
}
|
cgato__Thespis-Mistral-7b-v0.6/results_2024-07-02T03-55-19.886617.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6221868153754232,
|
5 |
+
"acc_stderr,none": 0.004838496966823936,
|
6 |
+
"acc_norm,none": 0.818263294164509,
|
7 |
+
"acc_norm_stderr,none": 0.003848392656939309,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 29.12698576180375,
|
12 |
+
"eqbench_stderr,none": 3.2541125218508933,
|
13 |
+
"percent_parseable,none": 79.53216374269006,
|
14 |
+
"percent_parseable_stderr,none": 3.0944459778533218,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=cgato/Thespis-Mistral-7b-v0.6,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "8f02867239bb861de358813db56bd68440534553",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719891027.5687327,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"</s>",
|
153 |
+
2
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "cgato/Thespis-Mistral-7b-v0.6",
|
168 |
+
"model_name_sanitized": "cgato__Thespis-Mistral-7b-v0.6",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 102322.69548256,
|
175 |
+
"end_time": 103821.816040654,
|
176 |
+
"total_evaluation_time_seconds": "1499.1205580940004"
|
177 |
+
}
|
chargoddard__loyal-piano-m7/results_2024-07-02T04-51-42.336742.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6439952200756821,
|
5 |
+
"acc_stderr,none": 0.004778380758851119,
|
6 |
+
"acc_norm,none": 0.8328022306313483,
|
7 |
+
"acc_norm_stderr,none": 0.003723897305645462,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 72.14962256589271,
|
12 |
+
"eqbench_stderr,none": 2.006126552035965,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=chargoddard/loyal-piano-m7,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "9ad4f1ce2cf75c3ab54af6f9872356cb199b330e",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719894335.7498412,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "chargoddard/loyal-piano-m7",
|
168 |
+
"model_name_sanitized": "chargoddard__loyal-piano-m7",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 105630.829033957,
|
175 |
+
"end_time": 107204.26616981,
|
176 |
+
"total_evaluation_time_seconds": "1573.4371358530043"
|
177 |
+
}
|
cognitivecomputations__dolphin-2.2.1-mistral-7b/results_2024-07-02T06-02-40.816103.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6285600477992431,
|
5 |
+
"acc_stderr,none": 0.004822022254886004,
|
6 |
+
"acc_norm,none": 0.8146783509261103,
|
7 |
+
"acc_norm_stderr,none": 0.003877641746375665,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 67.32561567936949,
|
12 |
+
"eqbench_stderr,none": 2.414051136188407,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=cognitivecomputations/dolphin-2.2.1-mistral-7b,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241748480,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "20f78ab87598cab137c8ce00855464cae403a3fd",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719898636.197451,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"</s>",
|
153 |
+
2
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"<|im_end|>",
|
157 |
+
32000
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 32000,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "cognitivecomputations/dolphin-2.2.1-mistral-7b",
|
168 |
+
"model_name_sanitized": "cognitivecomputations__dolphin-2.2.1-mistral-7b",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 109931.241971652,
|
175 |
+
"end_time": 111462.745517669,
|
176 |
+
"total_evaluation_time_seconds": "1531.5035460170038"
|
177 |
+
}
|
cognitivecomputations__dolphin-2.6-mistral-7b-dpo-laser/results_2024-07-02T04-21-44.877903.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6483768173670583,
|
5 |
+
"acc_stderr,none": 0.004765012078929417,
|
6 |
+
"acc_norm,none": 0.8360884285998805,
|
7 |
+
"acc_norm_stderr,none": 0.003694387361177522,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 71.57020405475217,
|
12 |
+
"eqbench_stderr,none": 2.0257691517275624,
|
13 |
+
"percent_parseable,none": 99.41520467836257,
|
14 |
+
"percent_parseable_stderr,none": 0.5847953216374273,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241740288,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "95999a69464ffcf4e25854208271000dfc255696",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719892564.0480487,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<|im_end|>",
|
153 |
+
2
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"<|im_end|>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser",
|
168 |
+
"model_name_sanitized": "cognitivecomputations__dolphin-2.6-mistral-7b-dpo-laser",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 103859.073714916,
|
175 |
+
"end_time": 105406.807341044,
|
176 |
+
"total_evaluation_time_seconds": "1547.7336261279997"
|
177 |
+
}
|
head-empty-ai__Mytho-Lemon-11B/results_2024-07-02T03-27-57.446245.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6298546106353317,
|
5 |
+
"acc_stderr,none": 0.004818566366066908,
|
6 |
+
"acc_norm,none": 0.7977494523003386,
|
7 |
+
"acc_norm_stderr,none": 0.0040085714314836915,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 60.025207476634726,
|
12 |
+
"eqbench_stderr,none": 2.7274520011253087,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=head-empty-ai/Mytho-Lemon-11B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 10731524096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "793a2d1bf7fe26da4824e13b7992465f2f4765d6",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
8
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719888600.6598475,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "head-empty-ai/Mytho-Lemon-11B",
|
168 |
+
"model_name_sanitized": "head-empty-ai__Mytho-Lemon-11B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 99895.742790118,
|
175 |
+
"end_time": 102179.375651272,
|
176 |
+
"total_evaluation_time_seconds": "2283.632861153994"
|
177 |
+
}
|
maywell__Synatra-7B-v0.3-RP/results_2024-07-02T06-46-15.142587.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6164110734913364,
|
5 |
+
"acc_stderr,none": 0.004852658876775384,
|
6 |
+
"acc_norm,none": 0.8046205935072694,
|
7 |
+
"acc_norm_stderr,none": 0.0039568217050184535,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 54.93035121530972,
|
12 |
+
"eqbench_stderr,none": 2.672374443919001,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=maywell/Synatra-7B-v0.3-RP,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241748480,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "a994747e68972f9018cd454730174211f9e46736",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719901236.0567749,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"</s>",
|
153 |
+
2
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"<|im_end|>",
|
157 |
+
32000
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 32000,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "maywell/Synatra-7B-v0.3-RP",
|
168 |
+
"model_name_sanitized": "maywell__Synatra-7B-v0.3-RP",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 112531.153671088,
|
175 |
+
"end_time": 114077.071988352,
|
176 |
+
"total_evaluation_time_seconds": "1545.9183172640041"
|
177 |
+
}
|
mistralai__Mistral-7B-Instruct-v0.1/results_2024-07-02T04-41-17.557455.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.5630352519418442,
|
5 |
+
"acc_stderr,none": 0.004949969363017642,
|
6 |
+
"acc_norm,none": 0.7466640111531567,
|
7 |
+
"acc_norm_stderr,none": 0.004340328204135102,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 46.82017378717466,
|
12 |
+
"eqbench_stderr,none": 3.211082755225061,
|
13 |
+
"percent_parseable,none": 100.0,
|
14 |
+
"percent_parseable_stderr,none": 0.0,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=mistralai/Mistral-7B-Instruct-v0.1,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "86370fc1f5e0aa51b50dcdf6eada80697b570099",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719893767.2215395,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "mistralai/Mistral-7B-Instruct-v0.1",
|
168 |
+
"model_name_sanitized": "mistralai__Mistral-7B-Instruct-v0.1",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 105062.200308793,
|
175 |
+
"end_time": 106579.486870813,
|
176 |
+
"total_evaluation_time_seconds": "1517.2865620199882"
|
177 |
+
}
|
mistralai__Mistral-7B-Instruct-v0.2/results_2024-07-02T05-07-32.922766.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.6609241187014538,
|
5 |
+
"acc_stderr,none": 0.004724281487819372,
|
6 |
+
"acc_norm,none": 0.8365863373829915,
|
7 |
+
"acc_norm_stderr,none": 0.0036898701424130766,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 65.49565100216773,
|
12 |
+
"eqbench_stderr,none": 2.53483923149953,
|
13 |
+
"percent_parseable,none": 99.41520467836257,
|
14 |
+
"percent_parseable_stderr,none": 0.5847953216374286,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=mistralai/Mistral-7B-Instruct-v0.2,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241732096,
|
129 |
+
"model_dtype": "torch.bfloat16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "99259002b41e116d28ccb2d04a9fbe22baed0c7f",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:0",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719895327.2738423,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"</s>",
|
157 |
+
2
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 2,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "mistralai/Mistral-7B-Instruct-v0.2",
|
168 |
+
"model_name_sanitized": "mistralai__Mistral-7B-Instruct-v0.2",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 106622.397945177,
|
175 |
+
"end_time": 108154.852197086,
|
176 |
+
"total_evaluation_time_seconds": "1532.4542519090028"
|
177 |
+
}
|
teknium__Hermes-Trismegistus-Mistral-7B/results_2024-07-02T05-46-44.024042.json
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.612427803226449,
|
5 |
+
"acc_stderr,none": 0.004862003566798519,
|
6 |
+
"acc_norm,none": 0.7921728739294961,
|
7 |
+
"acc_norm_stderr,none": 0.00404923158643312,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
},
|
10 |
+
"eq_bench": {
|
11 |
+
"eqbench,none": 64.86049373791583,
|
12 |
+
"eqbench_stderr,none": 2.1996109709512552,
|
13 |
+
"percent_parseable,none": 98.83040935672514,
|
14 |
+
"percent_parseable_stderr,none": 0.8245894595446,
|
15 |
+
"alias": "eq_bench"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"group_subtasks": {
|
19 |
+
"eq_bench": [],
|
20 |
+
"hellaswag": []
|
21 |
+
},
|
22 |
+
"configs": {
|
23 |
+
"eq_bench": {
|
24 |
+
"task": "eq_bench",
|
25 |
+
"dataset_path": "pbevan11/EQ-Bench",
|
26 |
+
"validation_split": "validation",
|
27 |
+
"doc_to_text": "prompt",
|
28 |
+
"doc_to_target": "reference_answer_fullscale",
|
29 |
+
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 0,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "eqbench",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "percent_parseable",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"do_sample": false,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"max_gen_toks": 80,
|
51 |
+
"until": [
|
52 |
+
"\n\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
"repeats": 1,
|
56 |
+
"should_decontaminate": false,
|
57 |
+
"metadata": {
|
58 |
+
"version": 2.1
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"hellaswag": {
|
62 |
+
"task": "hellaswag",
|
63 |
+
"group": [
|
64 |
+
"multiple_choice"
|
65 |
+
],
|
66 |
+
"dataset_path": "hellaswag",
|
67 |
+
"training_split": "train",
|
68 |
+
"validation_split": "validation",
|
69 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
70 |
+
"doc_to_text": "{{query}}",
|
71 |
+
"doc_to_target": "{{label}}",
|
72 |
+
"doc_to_choice": "choices",
|
73 |
+
"description": "",
|
74 |
+
"target_delimiter": " ",
|
75 |
+
"fewshot_delimiter": "\n\n",
|
76 |
+
"num_fewshot": 0,
|
77 |
+
"metric_list": [
|
78 |
+
{
|
79 |
+
"metric": "acc",
|
80 |
+
"aggregation": "mean",
|
81 |
+
"higher_is_better": true
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"metric": "acc_norm",
|
85 |
+
"aggregation": "mean",
|
86 |
+
"higher_is_better": true
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"output_type": "multiple_choice",
|
90 |
+
"repeats": 1,
|
91 |
+
"should_decontaminate": false,
|
92 |
+
"metadata": {
|
93 |
+
"version": 1.0
|
94 |
+
}
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"versions": {
|
98 |
+
"eq_bench": 2.1,
|
99 |
+
"hellaswag": 1.0
|
100 |
+
},
|
101 |
+
"n-shot": {
|
102 |
+
"eq_bench": 0,
|
103 |
+
"hellaswag": 0
|
104 |
+
},
|
105 |
+
"higher_is_better": {
|
106 |
+
"eq_bench": {
|
107 |
+
"eqbench": true,
|
108 |
+
"percent_parseable": true
|
109 |
+
},
|
110 |
+
"hellaswag": {
|
111 |
+
"acc": true,
|
112 |
+
"acc_norm": true
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"n-samples": {
|
116 |
+
"hellaswag": {
|
117 |
+
"original": 10042,
|
118 |
+
"effective": 10042
|
119 |
+
},
|
120 |
+
"eq_bench": {
|
121 |
+
"original": 171,
|
122 |
+
"effective": 171
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"config": {
|
126 |
+
"model": "hf",
|
127 |
+
"model_args": "pretrained=teknium/Hermes-Trismegistus-Mistral-7B,trust_remote_code=True",
|
128 |
+
"model_num_parameters": 7241748480,
|
129 |
+
"model_dtype": "torch.float16",
|
130 |
+
"model_revision": "main",
|
131 |
+
"model_sha": "d5757feda9c0c62c7a56fdc2eff7d5041c970a83",
|
132 |
+
"batch_size": "auto",
|
133 |
+
"batch_sizes": [
|
134 |
+
64
|
135 |
+
],
|
136 |
+
"device": "cuda:1",
|
137 |
+
"use_cache": null,
|
138 |
+
"limit": null,
|
139 |
+
"bootstrap_iters": 100000,
|
140 |
+
"gen_kwargs": null,
|
141 |
+
"random_seed": 0,
|
142 |
+
"numpy_seed": 1234,
|
143 |
+
"torch_seed": 1234,
|
144 |
+
"fewshot_seed": 1234
|
145 |
+
},
|
146 |
+
"git_hash": null,
|
147 |
+
"date": 1719897658.008983,
|
148 |
+
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 24\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 768 KiB (24 instances)\nL1i cache: 768 KiB (24 instances)\nL2 cache: 24 MiB (24 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
|
149 |
+
"transformers_version": "4.41.2",
|
150 |
+
"upper_git_hash": null,
|
151 |
+
"tokenizer_pad_token": [
|
152 |
+
"<unk>",
|
153 |
+
0
|
154 |
+
],
|
155 |
+
"tokenizer_eos_token": [
|
156 |
+
"<|im_end|>",
|
157 |
+
32000
|
158 |
+
],
|
159 |
+
"tokenizer_bos_token": [
|
160 |
+
"<s>",
|
161 |
+
1
|
162 |
+
],
|
163 |
+
"eot_token_id": 32000,
|
164 |
+
"max_length": 32768,
|
165 |
+
"task_hashes": {},
|
166 |
+
"model_source": "hf",
|
167 |
+
"model_name": "teknium/Hermes-Trismegistus-Mistral-7B",
|
168 |
+
"model_name_sanitized": "teknium__Hermes-Trismegistus-Mistral-7B",
|
169 |
+
"system_instruction": null,
|
170 |
+
"system_instruction_sha": null,
|
171 |
+
"fewshot_as_multiturn": false,
|
172 |
+
"chat_template": null,
|
173 |
+
"chat_template_sha": null,
|
174 |
+
"start_time": 108953.100902165,
|
175 |
+
"end_time": 110505.95347585,
|
176 |
+
"total_evaluation_time_seconds": "1552.8525736849988"
|
177 |
+
}
|