hcazrej commited on
Commit
a032db0
·
verified ·
1 Parent(s): a0a3fa4

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/GPTNeoX-160m",
3
+ "architectures": [
4
+ "GPTNeoXForCausalLM"
5
+ ],
6
+ "attention_bias": true,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "config_custom.GPTNeoXConfig",
10
+ "AutoModel": "modeling_custom.GPTNeoXModel",
11
+ "AutoModelForCausalLM": "modeling_custom.GPTNeoXForCausalLM"
12
+ },
13
+ "bos_token_id": 0,
14
+ "classifier_dropout": 0.1,
15
+ "eos_token_id": 0,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout": 0.0,
18
+ "hidden_size": 768,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "layer_norm_eps": 1e-05,
22
+ "max_position_embeddings": 2048,
23
+ "model_type": "gpt_neox",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 12,
26
+ "partial_rotary_factor": 0.25,
27
+ "rope_scaling": null,
28
+ "rope_theta": 10000,
29
+ "rotary_emb_base": 10000,
30
+ "rotary_pct": 0.25,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.45.0",
34
+ "use_cache": true,
35
+ "use_parallel_residual": true,
36
+ "vocab_size": 50304
37
+ }
config_custom.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """GPTNeoX model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.modeling_rope_utils import rope_config_validation
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class GPTNeoXConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
28
+ GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
29
+ with the defaults will yield a similar configuration to that of the GPTNeoX
30
+ [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 50432):
38
+ Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`GPTNeoXModel`].
40
+ hidden_size (`int`, *optional*, defaults to 6144):
41
+ Dimension of the encoder layers and the pooler layer.
42
+ num_hidden_layers (`int`, *optional*, defaults to 44):
43
+ Number of hidden layers in the Transformer encoder.
44
+ num_attention_heads (`int`, *optional*, defaults to 64):
45
+ Number of attention heads for each attention layer in the Transformer encoder.
46
+ intermediate_size (`int`, *optional*, defaults to 24576):
47
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
48
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
49
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
50
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
51
+ rotary_pct (`float`, *optional*, defaults to 0.25):
52
+ percentage of hidden dimensions to allocate to rotary embeddings
53
+ rotary_emb_base (`int`, *optional*, defaults to 10000)
54
+ base for computing rotary embeddings frequency
55
+ attention_dropout (`float`, *optional*, defaults to 0.0):
56
+ The dropout ratio probability of the attention score.
57
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
58
+ The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
59
+ hidden states.
60
+ classifier_dropout (`float`, *optional*, defaults to 0.1):
61
+ Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
62
+
63
+ The dropout ratio for the hidden layer.
64
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
65
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
66
+ just in case (e.g., 512 or 1024 or 2048).
67
+ initializer_range (`float`, *optional*, defaults to 1e-5):
68
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
69
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
70
+ The epsilon used by the layer normalization layers.
71
+ use_cache (`bool`, *optional*, defaults to `True`):
72
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
73
+ relevant if `config.is_decoder=True`.
74
+ use_parallel_residual (`bool`, *optional*, defaults to `True`):
75
+ Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
76
+ speedup at large scales (e.g. 20B).
77
+ rope_scaling (`Dict`, *optional*):
78
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
79
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
80
+ accordingly.
81
+ Expected contents:
82
+ `rope_type` (`str`):
83
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
84
+ 'llama3'], with 'default' being the original RoPE implementation.
85
+ `factor` (`float`, *optional*):
86
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
87
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
88
+ original maximum pre-trained length.
89
+ `original_max_position_embeddings` (`int`, *optional*):
90
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
91
+ pretraining.
92
+ `attention_factor` (`float`, *optional*):
93
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
94
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
95
+ `factor` field to infer the suggested value.
96
+ `beta_fast` (`float`, *optional*):
97
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
98
+ ramp function. If unspecified, it defaults to 32.
99
+ `beta_slow` (`float`, *optional*):
100
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
101
+ ramp function. If unspecified, it defaults to 1.
102
+ `short_factor` (`List[float]`, *optional*):
103
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
104
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
105
+ size divided by the number of attention heads divided by 2
106
+ `long_factor` (`List[float]`, *optional*):
107
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
108
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
109
+ size divided by the number of attention heads divided by 2
110
+ `low_freq_factor` (`float`, *optional*):
111
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
112
+ `high_freq_factor` (`float`, *optional*):
113
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
114
+ attention_bias (`bool`, *optional*, defaults to `True`):
115
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
116
+
117
+ Example:
118
+
119
+ ```python
120
+ >>> from transformers import GPTNeoXConfig, GPTNeoXModel
121
+
122
+ >>> # Initializing a GPTNeoX gpt-neox-20b style configuration
123
+ >>> configuration = GPTNeoXConfig()
124
+
125
+ >>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
126
+ >>> model = GPTNeoXModel(configuration) # doctest: +SKIP
127
+
128
+ >>> # Accessing the model configuration
129
+ >>> configuration = model.config # doctest: +SKIP
130
+ ```"""
131
+
132
+ model_type = "gpt_neox"
133
+ keys_to_ignore_at_inference = ["past_key_values"]
134
+
135
+ def __init__(
136
+ self,
137
+ vocab_size=50432,
138
+ hidden_size=6144,
139
+ num_hidden_layers=44,
140
+ num_attention_heads=64,
141
+ intermediate_size=24576,
142
+ hidden_act="gelu",
143
+ rotary_pct=0.25,
144
+ rotary_emb_base=10000,
145
+ attention_dropout=0.0,
146
+ hidden_dropout=0.0,
147
+ classifier_dropout=0.1,
148
+ max_position_embeddings=2048,
149
+ initializer_range=0.02,
150
+ layer_norm_eps=1e-5,
151
+ use_cache=True,
152
+ bos_token_id=0,
153
+ eos_token_id=2,
154
+ tie_word_embeddings=False,
155
+ use_parallel_residual=True,
156
+ rope_scaling=None,
157
+ attention_bias=True,
158
+ **kwargs,
159
+ ):
160
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
161
+ self.vocab_size = vocab_size
162
+ self.max_position_embeddings = max_position_embeddings
163
+ self.hidden_size = hidden_size
164
+ self.num_hidden_layers = num_hidden_layers
165
+ self.num_attention_heads = num_attention_heads
166
+ self.intermediate_size = intermediate_size
167
+ self.hidden_act = hidden_act
168
+ self.rotary_pct = rotary_pct
169
+ self.partial_rotary_factor = rotary_pct
170
+ self.rotary_emb_base = rotary_emb_base
171
+ self.rope_theta = rotary_emb_base
172
+ self.attention_dropout = attention_dropout
173
+ self.hidden_dropout = hidden_dropout
174
+ self.classifier_dropout = classifier_dropout
175
+ self.initializer_range = initializer_range
176
+ self.layer_norm_eps = layer_norm_eps
177
+ self.use_cache = use_cache
178
+ self.tie_word_embeddings = tie_word_embeddings
179
+ self.use_parallel_residual = use_parallel_residual
180
+ self.rope_scaling = rope_scaling
181
+ self.attention_bias = attention_bias
182
+ # Validate the correctness of rotary position embeddings parameters
183
+ # BC: if there is a 'type' field, move it to 'rope_type'.
184
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
185
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
186
+ rope_config_validation(self)
187
+
188
+ if self.hidden_size % self.num_attention_heads != 0:
189
+ raise ValueError(
190
+ "The hidden size is not divisble by the number of attention heads! Make sure to update them!"
191
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.45.0"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa062b9281c2058b7e94b8f578dcaacad0cdd2503e1014be3351ebf64b18778d
3
+ size 324662984
modeling_custom.py ADDED
@@ -0,0 +1,1577 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch GPTNeoX model."""
16
+
17
+ from typing import Optional, Tuple, Union
18
+
19
+ import torch
20
+ import torch.utils.checkpoint
21
+ from packaging import version
22
+ from torch import nn
23
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
24
+
25
+ from transformers.activations import ACT2FN
26
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
27
+ from transformers.file_utils import (
28
+ add_code_sample_docstrings,
29
+ add_start_docstrings,
30
+ add_start_docstrings_to_model_forward,
31
+ replace_return_docstrings,
32
+ )
33
+ from transformers.generation import GenerationMixin
34
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
35
+ from transformers.modeling_outputs import (
36
+ BaseModelOutputWithPast,
37
+ CausalLMOutputWithPast,
38
+ QuestionAnsweringModelOutput,
39
+ SequenceClassifierOutputWithPast,
40
+ TokenClassifierOutput,
41
+ )
42
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.utils import (
45
+ get_torch_version,
46
+ is_flash_attn_2_available,
47
+ is_flash_attn_greater_or_equal_2_10,
48
+ logging,
49
+ )
50
+ from .config_custom import GPTNeoXConfig
51
+
52
+
53
+ if is_flash_attn_2_available():
54
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
55
+
56
+ logger = logging.get_logger(__name__)
57
+
58
+ _CHECKPOINT_FOR_DOC = "trl-internal-testing/tiny-random-GPTNeoXForCausalLM"
59
+ _REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neox-20b"
60
+ _CONFIG_FOR_DOC = "GPTNeoXConfig"
61
+
62
+
63
+ # Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
64
+ def _prepare_4d_causal_attention_mask_with_cache_position(
65
+ attention_mask: torch.Tensor,
66
+ sequence_length: int,
67
+ target_length: int,
68
+ dtype: torch.dtype,
69
+ device: torch.device,
70
+ min_dtype: float,
71
+ cache_position: torch.Tensor,
72
+ batch_size: int,
73
+ ):
74
+ """
75
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
76
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
77
+
78
+ Args:
79
+ attention_mask (`torch.Tensor`):
80
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
81
+ sequence_length (`int`):
82
+ The sequence length being processed.
83
+ target_length (`int`):
84
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
85
+ dtype (`torch.dtype`):
86
+ The dtype to use for the 4D attention mask.
87
+ device (`torch.device`):
88
+ The device to plcae the 4D attention mask on.
89
+ min_dtype (`float`):
90
+ The minimum value representable with the dtype `dtype`.
91
+ cache_position (`torch.Tensor`):
92
+ Indices depicting the position of the input sequence tokens in the sequence.
93
+ batch_size (`torch.Tensor`):
94
+ Batch size.
95
+ """
96
+ if attention_mask is not None and attention_mask.dim() == 4:
97
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
98
+ causal_mask = attention_mask
99
+ else:
100
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
101
+ if sequence_length != 1:
102
+ causal_mask = torch.triu(causal_mask, diagonal=1)
103
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
104
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
105
+ if attention_mask is not None:
106
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
107
+ mask_length = attention_mask.shape[-1]
108
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
109
+ padding_mask = padding_mask == 0
110
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
111
+ padding_mask, min_dtype
112
+ )
113
+
114
+ return causal_mask
115
+
116
+
117
+ class GPTNeoXPreTrainedModel(PreTrainedModel):
118
+ """
119
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
120
+ models.
121
+ """
122
+
123
+ config_class = GPTNeoXConfig
124
+ base_model_prefix = "gpt_neox"
125
+ supports_gradient_checkpointing = True
126
+ _no_split_modules = ["GPTNeoXLayer"]
127
+ _skip_keys_device_placement = "past_key_values"
128
+ _supports_flash_attn_2 = True
129
+ _supports_cache_class = True
130
+ _supports_quantized_cache = True
131
+ _supports_static_cache = True
132
+ _supports_sdpa = True
133
+
134
+ def _init_weights(self, module):
135
+ """Initialize the weights"""
136
+ if isinstance(module, nn.Linear):
137
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
138
+ if module.bias is not None:
139
+ module.bias.data.zero_()
140
+ elif isinstance(module, nn.Embedding):
141
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
142
+ if module.padding_idx is not None:
143
+ module.weight.data[module.padding_idx].zero_()
144
+ elif isinstance(module, nn.LayerNorm):
145
+ module.bias.data.zero_()
146
+ module.weight.data.fill_(1.0)
147
+
148
+
149
+ class GPTNeoXAttention(nn.Module):
150
+ def __init__(self, config, layer_idx=None):
151
+ super().__init__()
152
+ self.config = config
153
+ self.num_attention_heads = config.num_attention_heads
154
+ self.hidden_size = config.hidden_size
155
+ if self.hidden_size % self.num_attention_heads != 0:
156
+ raise ValueError(
157
+ "The hidden size is not divisble by the number of attention heads! Make sure to update them"
158
+ )
159
+ self.head_size = self.hidden_size // self.num_attention_heads
160
+ self.rotary_ndims = int(self.head_size * config.rotary_pct)
161
+ self.rope_theta = config.rotary_emb_base
162
+ self._init_bias(config.max_position_embeddings)
163
+
164
+ self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
165
+ self.rotary_emb = GPTNeoXRotaryEmbedding(config=self.config)
166
+
167
+ if layer_idx is None:
168
+ logger.warning_once(
169
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
170
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
171
+ "when creating this class."
172
+ )
173
+ self.norm_factor = self.head_size**-0.5
174
+ self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.attention_bias)
175
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
176
+ self.attention_dropout = nn.Dropout(config.attention_dropout)
177
+ self.is_causal = True
178
+ self.layer_idx = layer_idx
179
+
180
+ def _init_bias(self, max_positions, device=None):
181
+ self.register_buffer(
182
+ "bias",
183
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
184
+ 1, 1, max_positions, max_positions
185
+ ),
186
+ persistent=False,
187
+ )
188
+ if device is not None:
189
+ self.bias = self.bias.to(device)
190
+
191
+ def forward(
192
+ self,
193
+ hidden_states: torch.FloatTensor,
194
+ attention_mask: torch.FloatTensor,
195
+ position_ids: torch.LongTensor,
196
+ head_mask: Optional[torch.FloatTensor] = None,
197
+ layer_past: Optional[Cache] = None,
198
+ use_cache: Optional[bool] = False,
199
+ output_attentions: Optional[bool] = False,
200
+ padding_mask: Optional[torch.Tensor] = None,
201
+ cache_position: Optional[torch.LongTensor] = None,
202
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
203
+ ):
204
+ # Apply attention-specific projections and rope
205
+ query, key, value, present = self._attn_projections_and_rope(
206
+ hidden_states=hidden_states,
207
+ position_ids=position_ids,
208
+ layer_past=layer_past,
209
+ use_cache=use_cache,
210
+ position_embeddings=position_embeddings,
211
+ )
212
+
213
+ # Compute attention
214
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
215
+
216
+ # Reshape outputs
217
+ attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
218
+ attn_output = self.dense(attn_output)
219
+
220
+ outputs = (attn_output, present)
221
+ if output_attentions:
222
+ outputs += (attn_weights,)
223
+
224
+ return outputs
225
+
226
+ @classmethod
227
+ def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
228
+ """
229
+ Splits hidden dim into attn_head_size and num_attention_heads
230
+ """
231
+ # tensor: [bs, seq_len, hidden_size]
232
+ new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
233
+ # -> [bs, seq_len, num_attention_heads, attn_head_size]
234
+ tensor = tensor.view(new_shape)
235
+ # -> [bs, num_attention_heads, seq_len, attn_head_size]
236
+ tensor = tensor.permute(0, 2, 1, 3)
237
+ return tensor
238
+
239
+ @classmethod
240
+ def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
241
+ """
242
+ Merges attn_head_size dim and num_attn_heads dim into hidden dim
243
+ """
244
+ # tensor [bs, num_attention_heads, seq_len, attn_head_size]
245
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
246
+ # -> [bs, seq_len, num_attention_heads, attn_head_size]
247
+ tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
248
+ # -> [bs, seq_len, hidden_size]
249
+ return tensor
250
+
251
+ def _attn_projections_and_rope(
252
+ self,
253
+ hidden_states: torch.FloatTensor,
254
+ position_ids: torch.LongTensor,
255
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
256
+ use_cache: Optional[bool] = False,
257
+ cache_position: Optional[torch.LongTensor] = None,
258
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
259
+ ):
260
+ # Compute QKV
261
+ # Attention heads [batch, seq_len, hidden_size]
262
+ # --> [batch, seq_len, (np * 3 * head_size)]
263
+ qkv = self.query_key_value(hidden_states)
264
+
265
+ # [batch, seq_len, (num_heads * 3 * head_size)]
266
+ # --> [batch, seq_len, num_heads, 3 * head_size]
267
+ new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
268
+ qkv = qkv.view(*new_qkv_shape)
269
+
270
+ # [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
271
+ query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
272
+ key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
273
+ value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
274
+
275
+ # Compute rotary embeddings on rotary_ndims
276
+ query_rot = query[..., : self.rotary_ndims]
277
+ query_pass = query[..., self.rotary_ndims :]
278
+ key_rot = key[..., : self.rotary_ndims]
279
+ key_pass = key[..., self.rotary_ndims :]
280
+
281
+ if position_embeddings is None:
282
+ logger.warning_once(
283
+ "The attention layers in this model are transitioning from computing the RoPE embeddings internally "
284
+ "through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
285
+ "`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
286
+ "removed and `position_embeddings` will be mandatory."
287
+ )
288
+ cos, sin = self.rotary_emb(value, position_ids)
289
+ else:
290
+ cos, sin = position_embeddings
291
+ query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
292
+ query = torch.cat((query, query_pass), dim=-1)
293
+ key = torch.cat((key, key_pass), dim=-1)
294
+
295
+ # Cache QKV values
296
+ if layer_past is not None:
297
+ cache_kwargs = {
298
+ "sin": sin,
299
+ "cos": cos,
300
+ "partial_rotation_size": self.rotary_ndims,
301
+ "cache_position": cache_position,
302
+ }
303
+ key, value = layer_past.update(key, value, self.layer_idx, cache_kwargs)
304
+
305
+ return query, key, value, layer_past
306
+
307
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
308
+ # q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
309
+ # compute causal mask from causal mask buffer
310
+ batch_size, num_attention_heads, query_length, attn_head_size = query.size()
311
+ key_length = key.size(-2)
312
+
313
+ # dynamically increase the causal mask with the key length, if needed.
314
+ if key_length > self.bias.shape[-1]:
315
+ self._init_bias(key_length, device=key.device)
316
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
317
+
318
+ query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
319
+ key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
320
+ attn_scores = torch.zeros(
321
+ batch_size * num_attention_heads,
322
+ query_length,
323
+ key_length,
324
+ dtype=query.dtype,
325
+ device=key.device,
326
+ )
327
+ attn_scores = torch.baddbmm(
328
+ attn_scores,
329
+ query,
330
+ key.transpose(1, 2),
331
+ beta=1.0,
332
+ alpha=self.norm_factor,
333
+ )
334
+ attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
335
+
336
+ mask_value = torch.finfo(attn_scores.dtype).min
337
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
338
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
339
+ mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
340
+ attn_scores = torch.where(causal_mask, attn_scores, mask_value)
341
+
342
+ if attention_mask is not None: # no matter the length, we just slice it
343
+ causal_mask = attention_mask[:, :, :, : key.shape[-2]]
344
+ attn_scores = attn_scores + causal_mask
345
+
346
+ attn_weights = nn.functional.softmax(attn_scores, dim=-1)
347
+ attn_weights = attn_weights.to(value.dtype)
348
+
349
+ # Mask heads if we want to
350
+ if head_mask is not None:
351
+ attn_weights = attn_weights * head_mask
352
+
353
+ attn_weights = self.attention_dropout(attn_weights)
354
+
355
+ attn_output = torch.matmul(attn_weights, value)
356
+ return attn_output, attn_weights
357
+
358
+
359
+ class GPTNeoXFlashAttention2(GPTNeoXAttention):
360
+ """
361
+ GPTNeoX flash attention module. This module inherits from `GPTNeoXAttention` as the weights of the module stays
362
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
363
+ flash attention and deal with padding tokens in case the input contains any of them.
364
+ """
365
+
366
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
367
+ def __init__(self, *args, **kwargs):
368
+ super().__init__(*args, **kwargs)
369
+
370
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
371
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
372
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
373
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
374
+
375
+ def forward(
376
+ self,
377
+ hidden_states: torch.FloatTensor,
378
+ attention_mask: torch.FloatTensor,
379
+ position_ids: torch.LongTensor,
380
+ head_mask: Optional[torch.FloatTensor] = None,
381
+ layer_past: Optional[Cache] = None,
382
+ use_cache: Optional[bool] = False,
383
+ output_attentions: Optional[bool] = False,
384
+ cache_position: Optional[torch.LongTensor] = None,
385
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
386
+ ):
387
+ # Apply attention-specific projections and rope
388
+ query, key, value, present = self._attn_projections_and_rope(
389
+ hidden_states=hidden_states,
390
+ position_ids=position_ids,
391
+ layer_past=layer_past,
392
+ use_cache=use_cache,
393
+ cache_position=cache_position,
394
+ position_embeddings=position_embeddings,
395
+ )
396
+
397
+ query_length = query.shape[-2]
398
+
399
+ # GPT-neo-X casts query and key in fp32 to apply rotary embedding in full precision
400
+ target_dtype = value.dtype
401
+ if query.dtype != target_dtype:
402
+ query = query.to(target_dtype)
403
+ if key.dtype != target_dtype:
404
+ key = key.to(target_dtype)
405
+
406
+ #TODO: Permute to get the expected shape for Flash Attention
407
+ query = query.permute(0, 2, 1, 3)
408
+ key = key.permute(0, 2, 1, 3)
409
+ value = value.permute(0, 2, 1, 3)
410
+
411
+ attention_dropout = self.config.attention_dropout if self.training else 0.0
412
+
413
+ #TODO: Compute attention with _flash_attention_forward
414
+ attn_weights = _flash_attention_forward(
415
+ query,
416
+ key,
417
+ value,
418
+ attention_mask,
419
+ query_length,
420
+ is_causal=self.is_causal,
421
+ dropout=attention_dropout,
422
+ softmax_scale=self.norm_factor,
423
+ use_top_left_mask=self._flash_attn_uses_top_left_mask
424
+ )
425
+
426
+ #TODO: Reshape outputs before projection
427
+ attn_output = attn_weights.reshape(
428
+ attn_weights.shape[0],
429
+ attn_weights.shape[1],
430
+ self.hidden_size
431
+ )
432
+
433
+ attn_output = self.dense(attn_output)
434
+
435
+ outputs = (attn_output, layer_past)
436
+ if output_attentions:
437
+ outputs += (attn_weights,)
438
+
439
+ return outputs
440
+
441
+
442
+ class GPTNeoXSdpaAttention(GPTNeoXAttention):
443
+ """
444
+ GPTNeoX attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
445
+ `GPTNeoXAttention` as the weights of the module stays untouched. The only changes are on the forward pass
446
+ to adapt to the SDPA API.
447
+ """
448
+
449
+ def __init__(self, config, layer_idx=None):
450
+ super().__init__(config, layer_idx=layer_idx)
451
+
452
+ # SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
453
+ # attn_mask, so we need to call `.contiguous()`. This was fixed in torch==2.2.0.
454
+ # Reference: https://github.com/pytorch/pytorch/issues/112577
455
+ self.require_contiguous_qkv = version.parse(get_torch_version()) < version.parse("2.2.0")
456
+
457
+ def forward(
458
+ self,
459
+ hidden_states: torch.FloatTensor,
460
+ attention_mask: torch.FloatTensor,
461
+ position_ids: torch.LongTensor,
462
+ head_mask: Optional[torch.FloatTensor] = None,
463
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
464
+ use_cache: Optional[bool] = False,
465
+ output_attentions: Optional[bool] = False,
466
+ cache_position: Optional[torch.LongTensor] = None,
467
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
468
+ ):
469
+ if output_attentions or head_mask is not None:
470
+ logger.warning_once(
471
+ "`GPTNeoXSdpaAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not support "
472
+ "`output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, but "
473
+ "specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
474
+ 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
475
+ )
476
+ return super().forward(
477
+ hidden_states=hidden_states,
478
+ attention_mask=attention_mask,
479
+ position_ids=position_ids,
480
+ head_mask=head_mask,
481
+ layer_past=layer_past,
482
+ use_cache=use_cache,
483
+ output_attentions=output_attentions,
484
+ cache_position=cache_position,
485
+ )
486
+
487
+ bsz, q_len, _ = hidden_states.size()
488
+
489
+ # Apply attention-specific projections and rope
490
+ query, key, value, present = self._attn_projections_and_rope(
491
+ hidden_states=hidden_states,
492
+ position_ids=position_ids,
493
+ layer_past=layer_past,
494
+ use_cache=use_cache,
495
+ cache_position=cache_position,
496
+ position_embeddings=position_embeddings,
497
+ )
498
+
499
+ causal_mask = attention_mask
500
+ if attention_mask is not None:
501
+ causal_mask = causal_mask[:, :, :, : key.shape[-2]]
502
+
503
+ # GPT-neo-X casts query and key in fp32 to apply rotary embedding in full precision
504
+ target_dtype = value.dtype
505
+ if query.dtype != target_dtype:
506
+ query = query.to(target_dtype)
507
+ if key.dtype != target_dtype:
508
+ key = key.to(target_dtype)
509
+
510
+ # Avoid torch==2.1.2 specific bug for the memory-efficient backend in SDPA
511
+ if self.require_contiguous_qkv and query.device.type == "cuda" and attention_mask is not None:
512
+ query = query.contiguous()
513
+ key = key.contiguous()
514
+ value = value.contiguous()
515
+
516
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
517
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
518
+ is_causal = True if causal_mask is None and q_len > 1 else False
519
+
520
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
521
+ query=query,
522
+ key=key,
523
+ value=value,
524
+ attn_mask=causal_mask,
525
+ dropout_p=self.attention_dropout.p if self.training else 0.0,
526
+ is_causal=is_causal,
527
+ )
528
+
529
+ # Reshape outputs
530
+ attn_output = attn_output.transpose(1, 2).contiguous()
531
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
532
+
533
+ attn_output = self.dense(attn_output)
534
+
535
+ return attn_output, present, None
536
+
537
+
538
+ def attention_mask_func(attention_scores, ltor_mask):
539
+ attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
540
+ return attention_scores
541
+
542
+
543
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->GPTNeoX
544
+ class GPTNeoXRotaryEmbedding(nn.Module):
545
+ def __init__(
546
+ self,
547
+ dim=None,
548
+ max_position_embeddings=2048,
549
+ base=10000,
550
+ device=None,
551
+ scaling_factor=1.0,
552
+ rope_type="default",
553
+ config: Optional[GPTNeoXConfig] = None,
554
+ ):
555
+ super().__init__()
556
+ # TODO (joao): remove the `if` below, only used for BC
557
+ self.rope_kwargs = {}
558
+ if config is None:
559
+ logger.warning_once(
560
+ "`GPTNeoXRotaryEmbedding` can now be fully parameterized by passing the model config through the "
561
+ "`config` argument. All other arguments will be removed in v4.46"
562
+ )
563
+ self.rope_kwargs = {
564
+ "rope_type": rope_type,
565
+ "factor": scaling_factor,
566
+ "dim": dim,
567
+ "base": base,
568
+ "max_position_embeddings": max_position_embeddings,
569
+ }
570
+ self.rope_type = rope_type
571
+ self.max_seq_len_cached = max_position_embeddings
572
+ self.original_max_seq_len = max_position_embeddings
573
+ else:
574
+ # BC: "rope_type" was originally "type"
575
+ if config.rope_scaling is not None:
576
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
577
+ else:
578
+ self.rope_type = "default"
579
+ self.max_seq_len_cached = config.max_position_embeddings
580
+ self.original_max_seq_len = config.max_position_embeddings
581
+
582
+ self.config = config
583
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
584
+
585
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
586
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
587
+ self.original_inv_freq = self.inv_freq
588
+
589
+ def _dynamic_frequency_update(self, position_ids, device):
590
+ """
591
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
592
+ 1 - growing beyond the cached sequence length (allow scaling)
593
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
594
+ """
595
+ seq_len = torch.max(position_ids) + 1
596
+ if seq_len > self.max_seq_len_cached: # growth
597
+ inv_freq, self.attention_scaling = self.rope_init_fn(
598
+ self.config, device, seq_len=seq_len, **self.rope_kwargs
599
+ )
600
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
601
+ self.max_seq_len_cached = seq_len
602
+
603
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
604
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
605
+ self.max_seq_len_cached = self.original_max_seq_len
606
+
607
+ @torch.no_grad()
608
+ def forward(self, x, position_ids):
609
+ if "dynamic" in self.rope_type:
610
+ self._dynamic_frequency_update(position_ids, device=x.device)
611
+
612
+ # Core RoPE block
613
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
614
+ position_ids_expanded = position_ids[:, None, :].float()
615
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
616
+ device_type = x.device.type
617
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
618
+ with torch.autocast(device_type=device_type, enabled=False):
619
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
620
+ emb = torch.cat((freqs, freqs), dim=-1)
621
+ cos = emb.cos()
622
+ sin = emb.sin()
623
+
624
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
625
+ cos = cos * self.attention_scaling
626
+ sin = sin * self.attention_scaling
627
+
628
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
629
+
630
+
631
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->GPTNeoX
632
+ class GPTNeoXLinearScalingRotaryEmbedding(GPTNeoXRotaryEmbedding):
633
+ """GPTNeoXRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
634
+
635
+ def __init__(self, *args, **kwargs):
636
+ logger.warning_once(
637
+ "`GPTNeoXLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
638
+ "`GPTNeoXRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
639
+ )
640
+ kwargs["rope_type"] = "linear"
641
+ super().__init__(*args, **kwargs)
642
+
643
+
644
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->GPTNeoX
645
+ class GPTNeoXDynamicNTKScalingRotaryEmbedding(GPTNeoXRotaryEmbedding):
646
+ """GPTNeoXRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
647
+
648
+ def __init__(self, *args, **kwargs):
649
+ logger.warning_once(
650
+ "`GPTNeoXDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
651
+ "`GPTNeoXRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
652
+ "__init__)."
653
+ )
654
+ kwargs["rope_type"] = "dynamic"
655
+ super().__init__(*args, **kwargs)
656
+
657
+
658
+ def rotate_half(x):
659
+ """Rotates half the hidden dims of the input."""
660
+ x1 = x[..., : x.shape[-1] // 2]
661
+ x2 = x[..., x.shape[-1] // 2 :]
662
+ return torch.cat((-x2, x1), dim=-1)
663
+
664
+
665
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
666
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
667
+ """Applies Rotary Position Embedding to the query and key tensors.
668
+
669
+ Args:
670
+ q (`torch.Tensor`): The query tensor.
671
+ k (`torch.Tensor`): The key tensor.
672
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
673
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
674
+ position_ids (`torch.Tensor`, *optional*):
675
+ Deprecated and unused.
676
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
677
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
678
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
679
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
680
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
681
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
682
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
683
+ Returns:
684
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
685
+ """
686
+ cos = cos.unsqueeze(unsqueeze_dim)
687
+ sin = sin.unsqueeze(unsqueeze_dim)
688
+ q_embed = (q * cos) + (rotate_half(q) * sin)
689
+ k_embed = (k * cos) + (rotate_half(k) * sin)
690
+ return q_embed, k_embed
691
+
692
+
693
+ class GPTNeoXMLP(nn.Module):
694
+ def __init__(self, config):
695
+ super().__init__()
696
+ self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size)
697
+ self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size)
698
+ self.act = ACT2FN[config.hidden_act]
699
+
700
+ def forward(self, hidden_states):
701
+ hidden_states = self.dense_h_to_4h(hidden_states)
702
+ hidden_states = self.act(hidden_states)
703
+ hidden_states = self.dense_4h_to_h(hidden_states)
704
+ return hidden_states
705
+
706
+
707
+ GPT_NEOX_ATTENTION_CLASSES = {
708
+ "eager": GPTNeoXAttention,
709
+ "flash_attention_2": GPTNeoXFlashAttention2,
710
+ "sdpa": GPTNeoXSdpaAttention,
711
+ }
712
+
713
+
714
+ class GPTNeoXLayer(nn.Module):
715
+ def __init__(self, config, layer_idx):
716
+ super().__init__()
717
+ self.use_parallel_residual = config.use_parallel_residual
718
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
719
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
720
+ self.post_attention_dropout = nn.Dropout(config.hidden_dropout)
721
+ self.post_mlp_dropout = nn.Dropout(config.hidden_dropout)
722
+ self.attention = GPT_NEOX_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
723
+ self.mlp = GPTNeoXMLP(config)
724
+
725
+ def forward(
726
+ self,
727
+ hidden_states: Optional[torch.FloatTensor],
728
+ attention_mask: Optional[torch.FloatTensor] = None,
729
+ position_ids: Optional[torch.LongTensor] = None,
730
+ head_mask: Optional[torch.FloatTensor] = None,
731
+ use_cache: Optional[bool] = False,
732
+ layer_past: Optional[Cache] = None,
733
+ output_attentions: Optional[bool] = False,
734
+ cache_position: Optional[torch.LongTensor] = None,
735
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
736
+ ):
737
+ attention_layer_outputs = self.attention(
738
+ self.input_layernorm(hidden_states),
739
+ attention_mask=attention_mask,
740
+ position_ids=position_ids,
741
+ layer_past=layer_past,
742
+ head_mask=head_mask,
743
+ use_cache=use_cache,
744
+ output_attentions=output_attentions,
745
+ cache_position=cache_position,
746
+ position_embeddings=position_embeddings,
747
+ )
748
+ attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
749
+ attn_output = self.post_attention_dropout(attn_output)
750
+ outputs = attention_layer_outputs[1:]
751
+
752
+ if self.use_parallel_residual:
753
+ # pseudocode:
754
+ # x = x + attn(ln1(x)) + mlp(ln2(x))
755
+ mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
756
+ mlp_output = self.post_mlp_dropout(mlp_output)
757
+ hidden_states = mlp_output + attn_output + hidden_states
758
+ else:
759
+ # pseudocode:
760
+ # x = x + attn(ln1(x))
761
+ # x = x + mlp(ln2(x))
762
+ attn_output = attn_output + hidden_states
763
+ mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
764
+ mlp_output = self.post_mlp_dropout(mlp_output)
765
+ hidden_states = mlp_output + attn_output
766
+
767
+ if use_cache:
768
+ outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
769
+ else:
770
+ outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
771
+
772
+ return outputs
773
+
774
+
775
+ GPT_NEOX_START_DOCSTRING = r"""
776
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
777
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
778
+ behavior.
779
+
780
+ Parameters:
781
+ config ([`~GPTNeoXConfig`]): Model configuration class with all the parameters of the model.
782
+ Initializing with a config file does not load the weights associated with the model, only the
783
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
784
+ """
785
+
786
+ GPT_NEOX_INPUTS_DOCSTRING = r"""
787
+ Args:
788
+ input_ids (`torch.LongTensor` of shape `({0})`):
789
+ Indices of input sequence tokens in the vocabulary.
790
+
791
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
792
+ [`PreTrainedTokenizer.__call__`] for details.
793
+
794
+ [What are input IDs?](../glossary#input-ids)
795
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
796
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
797
+
798
+ - 1 for tokens that are **not masked**,
799
+ - 0 for tokens that are **masked**.
800
+
801
+ [What are attention masks?](../glossary#attention-mask)
802
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
803
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
804
+ config.n_positions - 1]`.
805
+
806
+ [What are position IDs?](../glossary#position-ids)
807
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
808
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
809
+
810
+ - 1 indicates the head is **not masked**,
811
+ - 0 indicates the head is **masked**.
812
+
813
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
814
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
815
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
816
+ model's internal embedding lookup matrix.
817
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
818
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
819
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
820
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
821
+
822
+ Two formats are allowed:
823
+ - a [`~cache_utils.Cache`] instance, see our
824
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
825
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
826
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
827
+ cache format.
828
+
829
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
830
+ legacy cache format will be returned.
831
+
832
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
833
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
834
+ of shape `(batch_size, sequence_length)`.
835
+ output_attentions (`bool`, *optional*):
836
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
837
+ tensors for more detail.
838
+ output_hidden_states (`bool`, *optional*):
839
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
840
+ more detail.
841
+ return_dict (`bool`, *optional*):
842
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
843
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
844
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
845
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
846
+ the complete sequence length.
847
+ """
848
+
849
+
850
+ @add_start_docstrings(
851
+ "The bare GPTNeoX Model transformer outputting raw hidden-states without any specific head on top.",
852
+ GPT_NEOX_START_DOCSTRING,
853
+ )
854
+ class GPTNeoXModel(GPTNeoXPreTrainedModel):
855
+ def __init__(self, config):
856
+ super().__init__(config)
857
+ self.config = config
858
+
859
+ self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
860
+ self.emb_dropout = nn.Dropout(config.hidden_dropout)
861
+ self.layers = nn.ModuleList([GPTNeoXLayer(config, i) for i in range(config.num_hidden_layers)])
862
+ self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
863
+ self.rotary_emb = GPTNeoXRotaryEmbedding(config=config)
864
+
865
+ self._attn_implementation = config._attn_implementation
866
+
867
+ self.gradient_checkpointing = False
868
+
869
+ # Initialize weights and apply final processing
870
+ self.post_init()
871
+
872
+ def get_input_embeddings(self):
873
+ return self.embed_in
874
+
875
+ def set_input_embeddings(self, value):
876
+ self.embed_in = value
877
+
878
+ @add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
879
+ @add_code_sample_docstrings(
880
+ checkpoint=_CHECKPOINT_FOR_DOC,
881
+ real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
882
+ output_type=BaseModelOutputWithPast,
883
+ config_class=_CONFIG_FOR_DOC,
884
+ )
885
+ def forward(
886
+ self,
887
+ input_ids: Optional[torch.LongTensor] = None,
888
+ attention_mask: Optional[torch.FloatTensor] = None,
889
+ position_ids: Optional[torch.LongTensor] = None,
890
+ head_mask: Optional[torch.FloatTensor] = None,
891
+ inputs_embeds: Optional[torch.FloatTensor] = None,
892
+ past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
893
+ use_cache: Optional[bool] = None,
894
+ output_attentions: Optional[bool] = None,
895
+ output_hidden_states: Optional[bool] = None,
896
+ return_dict: Optional[bool] = None,
897
+ cache_position: Optional[torch.LongTensor] = None,
898
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
899
+ r"""
900
+ use_cache (`bool`, *optional*):
901
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
902
+ `past_key_values`).
903
+ """
904
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
905
+ output_hidden_states = (
906
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
907
+ )
908
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
909
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
910
+
911
+ if (input_ids is None) ^ (inputs_embeds is not None):
912
+ raise ValueError(
913
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
914
+ )
915
+
916
+ if self.gradient_checkpointing and self.training:
917
+ if use_cache:
918
+ logger.warning_once(
919
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
920
+ )
921
+ use_cache = False
922
+
923
+ if inputs_embeds is None:
924
+ inputs_embeds = self.embed_in(input_ids)
925
+
926
+ # kept for BC (non `Cache` `past_key_values` inputs)
927
+ return_legacy_cache = False
928
+ if use_cache and not isinstance(past_key_values, Cache):
929
+ return_legacy_cache = True
930
+ if past_key_values is None:
931
+ past_key_values = DynamicCache()
932
+ else:
933
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
934
+ logger.warning_once(
935
+ "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
936
+ "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
937
+ "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
938
+ )
939
+
940
+ seq_length = inputs_embeds.shape[1]
941
+ if cache_position is None:
942
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
943
+ cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)
944
+
945
+ if position_ids is None:
946
+ position_ids = cache_position.unsqueeze(0)
947
+
948
+ causal_mask = self._update_causal_mask(
949
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
950
+ )
951
+
952
+ # Prepare head mask if needed
953
+ # 1.0 in head_mask indicate we keep the head
954
+ # attention_probs has shape bsz x n_heads x N x N
955
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
956
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
957
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
958
+ hidden_states = self.emb_dropout(inputs_embeds)
959
+
960
+ # create position embeddings to be shared across the decoder layers
961
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
962
+
963
+ next_decoder_cache = None
964
+ all_attentions = () if output_attentions else None
965
+ all_hidden_states = () if output_hidden_states else None
966
+ for i, layer in enumerate(
967
+ self.layers,
968
+ ):
969
+ if output_hidden_states:
970
+ all_hidden_states = all_hidden_states + (hidden_states,)
971
+
972
+ if self.gradient_checkpointing and self.training:
973
+ outputs = self._gradient_checkpointing_func(
974
+ layer.__call__,
975
+ hidden_states,
976
+ causal_mask,
977
+ position_ids,
978
+ head_mask[i],
979
+ use_cache,
980
+ None,
981
+ output_attentions,
982
+ cache_position,
983
+ position_embeddings,
984
+ )
985
+ else:
986
+ outputs = layer(
987
+ hidden_states,
988
+ attention_mask=causal_mask,
989
+ position_ids=position_ids,
990
+ head_mask=head_mask[i],
991
+ layer_past=past_key_values,
992
+ use_cache=use_cache,
993
+ output_attentions=output_attentions,
994
+ cache_position=cache_position,
995
+ position_embeddings=position_embeddings,
996
+ )
997
+ hidden_states = outputs[0]
998
+ if use_cache is True:
999
+ next_decoder_cache = outputs[1]
1000
+ if output_attentions:
1001
+ all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
1002
+
1003
+ hidden_states = self.final_layer_norm(hidden_states)
1004
+ # Add last hidden state
1005
+ if output_hidden_states:
1006
+ all_hidden_states = all_hidden_states + (hidden_states,)
1007
+
1008
+ next_cache = next_decoder_cache if use_cache else None
1009
+ if return_legacy_cache:
1010
+ next_cache = next_cache.to_legacy_cache()
1011
+
1012
+ if not return_dict:
1013
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attentions] if v is not None)
1014
+
1015
+ return BaseModelOutputWithPast(
1016
+ last_hidden_state=hidden_states,
1017
+ past_key_values=next_cache,
1018
+ hidden_states=all_hidden_states,
1019
+ attentions=all_attentions,
1020
+ )
1021
+
1022
+ # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
1023
+ def _update_causal_mask(
1024
+ self,
1025
+ attention_mask: torch.Tensor,
1026
+ input_tensor: torch.Tensor,
1027
+ cache_position: torch.Tensor,
1028
+ past_key_values: Cache,
1029
+ output_attentions: bool,
1030
+ ):
1031
+ if self.config._attn_implementation == "flash_attention_2":
1032
+ if attention_mask is not None and 0.0 in attention_mask:
1033
+ return attention_mask
1034
+ return None
1035
+
1036
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1037
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1038
+ # to infer the attention mask.
1039
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1040
+ using_static_cache = isinstance(past_key_values, StaticCache)
1041
+
1042
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1043
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1044
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1045
+ attention_mask,
1046
+ inputs_embeds=input_tensor,
1047
+ past_key_values_length=past_seen_tokens,
1048
+ is_training=self.training,
1049
+ ):
1050
+ return None
1051
+
1052
+ dtype, device = input_tensor.dtype, input_tensor.device
1053
+ min_dtype = torch.finfo(dtype).min
1054
+ sequence_length = input_tensor.shape[1]
1055
+ if using_static_cache:
1056
+ target_length = past_key_values.get_max_length()
1057
+ else:
1058
+ target_length = (
1059
+ attention_mask.shape[-1]
1060
+ if isinstance(attention_mask, torch.Tensor)
1061
+ else past_seen_tokens + sequence_length + 1
1062
+ )
1063
+
1064
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
1065
+ causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1066
+ attention_mask,
1067
+ sequence_length=sequence_length,
1068
+ target_length=target_length,
1069
+ dtype=dtype,
1070
+ device=device,
1071
+ min_dtype=min_dtype,
1072
+ cache_position=cache_position,
1073
+ batch_size=input_tensor.shape[0],
1074
+ )
1075
+
1076
+ if (
1077
+ self.config._attn_implementation == "sdpa"
1078
+ and attention_mask is not None
1079
+ and attention_mask.device.type == "cuda"
1080
+ and not output_attentions
1081
+ ):
1082
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1083
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1084
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1085
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1086
+
1087
+ return causal_mask
1088
+
1089
+
1090
+ @add_start_docstrings(
1091
+ """GPTNeoX Model with a `language modeling` head on top for CLM fine-tuning.""", GPT_NEOX_START_DOCSTRING
1092
+ )
1093
+ class GPTNeoXForCausalLM(GPTNeoXPreTrainedModel, GenerationMixin):
1094
+ _tied_weights_keys = ["embed_out.weight"]
1095
+
1096
+ def __init__(self, config):
1097
+ super().__init__(config)
1098
+
1099
+ self.gpt_neox = GPTNeoXModel(config)
1100
+ self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1101
+
1102
+ # Initialize weights and apply final processing
1103
+ self.post_init()
1104
+
1105
+ def get_output_embeddings(self):
1106
+ return self.embed_out
1107
+
1108
+ def set_output_embeddings(self, new_embeddings):
1109
+ self.embed_out = new_embeddings
1110
+
1111
+ @add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1112
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1113
+ def forward(
1114
+ self,
1115
+ input_ids: Optional[torch.LongTensor] = None,
1116
+ attention_mask: Optional[torch.FloatTensor] = None,
1117
+ position_ids: Optional[torch.LongTensor] = None,
1118
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1119
+ head_mask: Optional[torch.FloatTensor] = None,
1120
+ past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
1121
+ labels: Optional[torch.LongTensor] = None,
1122
+ use_cache: Optional[bool] = None,
1123
+ output_attentions: Optional[bool] = None,
1124
+ output_hidden_states: Optional[bool] = None,
1125
+ return_dict: Optional[bool] = None,
1126
+ cache_position: Optional[torch.LongTensor] = None,
1127
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1128
+ r"""
1129
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1130
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
1131
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
1132
+ ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
1133
+ use_cache (`bool`, *optional*):
1134
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1135
+ `past_key_values`).
1136
+
1137
+ Returns:
1138
+
1139
+ Example:
1140
+
1141
+ ```python
1142
+ >>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
1143
+ >>> import torch
1144
+
1145
+ >>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
1146
+ >>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
1147
+ >>> config.is_decoder = True
1148
+ >>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
1149
+
1150
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
1151
+ >>> outputs = model(**inputs)
1152
+
1153
+ >>> prediction_logits = outputs.logits
1154
+ ```"""
1155
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1156
+
1157
+ outputs = self.gpt_neox(
1158
+ input_ids,
1159
+ attention_mask=attention_mask,
1160
+ position_ids=position_ids,
1161
+ head_mask=head_mask,
1162
+ inputs_embeds=inputs_embeds,
1163
+ past_key_values=past_key_values,
1164
+ use_cache=use_cache,
1165
+ output_attentions=output_attentions,
1166
+ output_hidden_states=output_hidden_states,
1167
+ return_dict=return_dict,
1168
+ cache_position=cache_position,
1169
+ )
1170
+
1171
+ hidden_states = outputs[0]
1172
+ lm_logits = self.embed_out(hidden_states)
1173
+
1174
+ lm_loss = None
1175
+ if labels is not None:
1176
+ # move labels to correct device to enable model parallelism
1177
+ labels = labels.to(lm_logits.device)
1178
+ # we are doing next-token prediction; shift prediction scores and input ids by one
1179
+ shift_logits = lm_logits[:, :-1, :].contiguous()
1180
+ labels = labels[:, 1:].contiguous()
1181
+ loss_fct = CrossEntropyLoss()
1182
+ lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
1183
+
1184
+ if not return_dict:
1185
+ output = (lm_logits,) + outputs[1:]
1186
+ return ((lm_loss,) + output) if lm_loss is not None else output
1187
+
1188
+ return CausalLMOutputWithPast(
1189
+ loss=lm_loss,
1190
+ logits=lm_logits,
1191
+ past_key_values=outputs.past_key_values,
1192
+ hidden_states=outputs.hidden_states,
1193
+ attentions=outputs.attentions,
1194
+ )
1195
+
1196
+ # can't be copied from llama, gpt-neox has embed_out and not lm_head
1197
+ def prepare_inputs_for_generation(
1198
+ self,
1199
+ input_ids,
1200
+ past_key_values=None,
1201
+ attention_mask=None,
1202
+ inputs_embeds=None,
1203
+ cache_position=None,
1204
+ position_ids=None,
1205
+ use_cache=True,
1206
+ **kwargs,
1207
+ ):
1208
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1209
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1210
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1211
+ if past_key_values is not None:
1212
+ if inputs_embeds is not None: # Exception 1
1213
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1214
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1215
+ input_ids = input_ids[:, cache_position]
1216
+
1217
+ if attention_mask is not None and position_ids is None:
1218
+ # create position_ids on the fly for batch generation
1219
+ position_ids = attention_mask.long().cumsum(-1) - 1
1220
+ position_ids.masked_fill_(attention_mask == 0, 1)
1221
+ if past_key_values:
1222
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1223
+
1224
+ # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
1225
+ position_ids = position_ids.clone(memory_format=torch.contiguous_format)
1226
+
1227
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1228
+ if inputs_embeds is not None and cache_position[0] == 0:
1229
+ model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
1230
+ else:
1231
+ # The clone here is for the same reason as for `position_ids`.
1232
+ model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
1233
+
1234
+ if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
1235
+ if model_inputs["inputs_embeds"] is not None:
1236
+ batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
1237
+ device = model_inputs["inputs_embeds"].device
1238
+ else:
1239
+ batch_size, sequence_length = model_inputs["input_ids"].shape
1240
+ device = model_inputs["input_ids"].device
1241
+
1242
+ dtype = self.embed_out.weight.dtype
1243
+ min_dtype = torch.finfo(dtype).min
1244
+
1245
+ attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
1246
+ attention_mask,
1247
+ sequence_length=sequence_length,
1248
+ target_length=past_key_values.get_max_length(),
1249
+ dtype=dtype,
1250
+ device=device,
1251
+ min_dtype=min_dtype,
1252
+ cache_position=cache_position,
1253
+ batch_size=batch_size,
1254
+ )
1255
+
1256
+ model_inputs.update(
1257
+ {
1258
+ "position_ids": position_ids,
1259
+ "cache_position": cache_position,
1260
+ "past_key_values": past_key_values,
1261
+ "use_cache": use_cache,
1262
+ "attention_mask": attention_mask,
1263
+ }
1264
+ )
1265
+ return model_inputs
1266
+
1267
+ def _reorder_cache(self, past_key_values, beam_idx):
1268
+ reordered_past = ()
1269
+ for layer_past in past_key_values:
1270
+ reordered_past += (
1271
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
1272
+ + layer_past[2:],
1273
+ )
1274
+ return reordered_past
1275
+
1276
+
1277
+ @add_start_docstrings(
1278
+ """
1279
+ The GPTNeoX Model transformer with a sequence classification head on top (linear layer).
1280
+
1281
+ [`GPTNeoXForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1282
+ (e.g. GPT-1) do.
1283
+
1284
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1285
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1286
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1287
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1288
+ each row of the batch).
1289
+ """,
1290
+ GPT_NEOX_START_DOCSTRING,
1291
+ )
1292
+ class GPTNeoXForSequenceClassification(GPTNeoXPreTrainedModel):
1293
+ def __init__(self, config):
1294
+ super().__init__(config)
1295
+ self.num_labels = config.num_labels
1296
+ self.gpt_neox = GPTNeoXModel(config)
1297
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1298
+
1299
+ # Initialize weights and apply final processing
1300
+ self.post_init()
1301
+
1302
+ @add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
1303
+ @add_code_sample_docstrings(
1304
+ checkpoint=_CHECKPOINT_FOR_DOC,
1305
+ output_type=SequenceClassifierOutputWithPast,
1306
+ config_class=_CONFIG_FOR_DOC,
1307
+ )
1308
+ def forward(
1309
+ self,
1310
+ input_ids: Optional[torch.LongTensor] = None,
1311
+ attention_mask: Optional[torch.FloatTensor] = None,
1312
+ position_ids: Optional[torch.LongTensor] = None,
1313
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1314
+ head_mask: Optional[torch.FloatTensor] = None,
1315
+ past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
1316
+ labels: Optional[torch.LongTensor] = None,
1317
+ use_cache: Optional[bool] = None,
1318
+ output_attentions: Optional[bool] = None,
1319
+ output_hidden_states: Optional[bool] = None,
1320
+ return_dict: Optional[bool] = None,
1321
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
1322
+ r"""
1323
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1324
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1325
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1326
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1327
+ """
1328
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1329
+
1330
+ outputs = self.gpt_neox(
1331
+ input_ids,
1332
+ attention_mask=attention_mask,
1333
+ position_ids=position_ids,
1334
+ head_mask=head_mask,
1335
+ inputs_embeds=inputs_embeds,
1336
+ past_key_values=past_key_values,
1337
+ use_cache=use_cache,
1338
+ output_attentions=output_attentions,
1339
+ output_hidden_states=output_hidden_states,
1340
+ return_dict=return_dict,
1341
+ )
1342
+ hidden_states = outputs[0]
1343
+ logits = self.score(hidden_states)
1344
+
1345
+ if input_ids is not None:
1346
+ batch_size, sequence_length = input_ids.shape[:2]
1347
+ else:
1348
+ batch_size, sequence_length = inputs_embeds.shape[:2]
1349
+
1350
+ if self.config.pad_token_id is None and batch_size != 1:
1351
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1352
+ if self.config.pad_token_id is None:
1353
+ sequence_lengths = -1
1354
+ else:
1355
+ if input_ids is not None:
1356
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1357
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1358
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1359
+ sequence_lengths = sequence_lengths.to(logits.device)
1360
+ else:
1361
+ sequence_lengths = -1
1362
+ logger.warning_once(
1363
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1364
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1365
+ )
1366
+
1367
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1368
+
1369
+ loss = None
1370
+ if labels is not None:
1371
+ labels = labels.to(logits.device)
1372
+ if self.config.problem_type is None:
1373
+ if self.num_labels == 1:
1374
+ self.config.problem_type = "regression"
1375
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1376
+ self.config.problem_type = "single_label_classification"
1377
+ else:
1378
+ self.config.problem_type = "multi_label_classification"
1379
+
1380
+ if self.config.problem_type == "regression":
1381
+ loss_fct = MSELoss()
1382
+ if self.num_labels == 1:
1383
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1384
+ else:
1385
+ loss = loss_fct(pooled_logits, labels)
1386
+ elif self.config.problem_type == "single_label_classification":
1387
+ loss_fct = CrossEntropyLoss()
1388
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1389
+ elif self.config.problem_type == "multi_label_classification":
1390
+ loss_fct = BCEWithLogitsLoss()
1391
+ loss = loss_fct(pooled_logits, labels)
1392
+ if not return_dict:
1393
+ output = (pooled_logits,) + outputs[1:]
1394
+ return ((loss,) + output) if loss is not None else output
1395
+
1396
+ return SequenceClassifierOutputWithPast(
1397
+ loss=loss,
1398
+ logits=pooled_logits,
1399
+ past_key_values=outputs.past_key_values,
1400
+ hidden_states=outputs.hidden_states,
1401
+ attentions=outputs.attentions,
1402
+ )
1403
+
1404
+
1405
+ class GPTNeoXForTokenClassification(GPTNeoXPreTrainedModel):
1406
+ def __init__(self, config):
1407
+ super().__init__(config)
1408
+ self.num_labels = config.num_labels
1409
+
1410
+ self.gpt_neox = GPTNeoXModel(config)
1411
+ self.dropout = nn.Dropout(config.classifier_dropout)
1412
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1413
+
1414
+ # Initialize weights and apply final processing
1415
+ self.post_init()
1416
+
1417
+ @add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING)
1418
+ @add_code_sample_docstrings(
1419
+ checkpoint="LarsJonasson/pythia-410m-deduped-sft-swedish",
1420
+ output_type=TokenClassifierOutput,
1421
+ config_class=_CONFIG_FOR_DOC,
1422
+ expected_loss=0.25,
1423
+ )
1424
+ def forward(
1425
+ self,
1426
+ input_ids: Optional[torch.LongTensor] = None,
1427
+ past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor]]]] = None,
1428
+ attention_mask: Optional[torch.FloatTensor] = None,
1429
+ token_type_ids: Optional[torch.LongTensor] = None,
1430
+ position_ids: Optional[torch.LongTensor] = None,
1431
+ head_mask: Optional[torch.FloatTensor] = None,
1432
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1433
+ labels: Optional[torch.LongTensor] = None,
1434
+ use_cache: Optional[bool] = None,
1435
+ output_attentions: Optional[bool] = None,
1436
+ output_hidden_states: Optional[bool] = None,
1437
+ return_dict: Optional[bool] = None,
1438
+ ) -> Union[Tuple, TokenClassifierOutput]:
1439
+ r"""
1440
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1441
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1442
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1443
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1444
+ """
1445
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1446
+
1447
+ outputs = self.gpt_neox(
1448
+ input_ids,
1449
+ past_key_values=past_key_values,
1450
+ attention_mask=attention_mask,
1451
+ position_ids=position_ids,
1452
+ head_mask=head_mask,
1453
+ inputs_embeds=inputs_embeds,
1454
+ use_cache=use_cache,
1455
+ output_attentions=output_attentions,
1456
+ output_hidden_states=output_hidden_states,
1457
+ return_dict=return_dict,
1458
+ )
1459
+
1460
+ hidden_states = outputs[0]
1461
+ hidden_states = self.dropout(hidden_states)
1462
+ logits = self.classifier(hidden_states)
1463
+
1464
+ loss = None
1465
+ if labels is not None:
1466
+ labels = labels.to(logits.device)
1467
+ loss_fct = CrossEntropyLoss()
1468
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1469
+
1470
+ if not return_dict:
1471
+ output = (logits,) + outputs[2:]
1472
+ return ((loss,) + output) if loss is not None else output
1473
+
1474
+ return TokenClassifierOutput(
1475
+ loss=loss,
1476
+ logits=logits,
1477
+ hidden_states=outputs.hidden_states,
1478
+ attentions=outputs.attentions,
1479
+ )
1480
+
1481
+
1482
+ @add_start_docstrings(
1483
+ """
1484
+ The GPT-NeoX Model transformer with a span classification head on top for extractive question-answering tasks like
1485
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1486
+ """,
1487
+ GPT_NEOX_START_DOCSTRING,
1488
+ )
1489
+ class GPTNeoXForQuestionAnswering(GPTNeoXPreTrainedModel):
1490
+ def __init__(self, config):
1491
+ super().__init__(config)
1492
+ self.num_labels = config.num_labels
1493
+ self.gpt_neox = GPTNeoXModel(config)
1494
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1495
+
1496
+ # Initialize weights and apply final processing
1497
+ self.post_init()
1498
+
1499
+ @add_start_docstrings_to_model_forward(GPT_NEOX_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
1500
+ @add_code_sample_docstrings(
1501
+ checkpoint=_CHECKPOINT_FOR_DOC,
1502
+ output_type=QuestionAnsweringModelOutput,
1503
+ config_class=_CONFIG_FOR_DOC,
1504
+ real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
1505
+ )
1506
+ def forward(
1507
+ self,
1508
+ input_ids: Optional[torch.LongTensor] = None,
1509
+ attention_mask: Optional[torch.FloatTensor] = None,
1510
+ token_type_ids: Optional[torch.LongTensor] = None,
1511
+ position_ids: Optional[torch.LongTensor] = None,
1512
+ head_mask: Optional[torch.FloatTensor] = None,
1513
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1514
+ start_positions: Optional[torch.LongTensor] = None,
1515
+ end_positions: Optional[torch.LongTensor] = None,
1516
+ output_attentions: Optional[bool] = None,
1517
+ output_hidden_states: Optional[bool] = None,
1518
+ return_dict: Optional[bool] = None,
1519
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1520
+ r"""
1521
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1522
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1523
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1524
+ are not taken into account for computing the loss.
1525
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1526
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1527
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1528
+ are not taken into account for computing the loss.
1529
+ """
1530
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1531
+
1532
+ outputs = self.gpt_neox(
1533
+ input_ids,
1534
+ attention_mask=attention_mask,
1535
+ position_ids=position_ids,
1536
+ head_mask=head_mask,
1537
+ inputs_embeds=inputs_embeds,
1538
+ output_attentions=output_attentions,
1539
+ output_hidden_states=output_hidden_states,
1540
+ return_dict=return_dict,
1541
+ )
1542
+
1543
+ sequence_output = outputs[0]
1544
+
1545
+ logits = self.qa_outputs(sequence_output)
1546
+ start_logits, end_logits = logits.split(1, dim=-1)
1547
+ start_logits = start_logits.squeeze(-1).contiguous()
1548
+ end_logits = end_logits.squeeze(-1).contiguous()
1549
+
1550
+ total_loss = None
1551
+ if start_positions is not None and end_positions is not None:
1552
+ # If we are on multi-GPU, split add a dimension
1553
+ if len(start_positions.size()) > 1:
1554
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1555
+ if len(end_positions.size()) > 1:
1556
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1557
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1558
+ ignored_index = start_logits.size(1)
1559
+ start_positions = start_positions.clamp(0, ignored_index)
1560
+ end_positions = end_positions.clamp(0, ignored_index)
1561
+
1562
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1563
+ start_loss = loss_fct(start_logits, start_positions)
1564
+ end_loss = loss_fct(end_logits, end_positions)
1565
+ total_loss = (start_loss + end_loss) / 2
1566
+
1567
+ if not return_dict:
1568
+ output = (start_logits, end_logits) + outputs[2:]
1569
+ return ((total_loss,) + output) if total_loss is not None else output
1570
+
1571
+ return QuestionAnsweringModelOutput(
1572
+ loss=total_loss,
1573
+ start_logits=start_logits,
1574
+ end_logits=end_logits,
1575
+ hidden_states=outputs.hidden_states,
1576
+ attentions=outputs.attentions,
1577
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ }
206
+ },
207
+ "bos_token": "<|endoftext|>",
208
+ "clean_up_tokenization_spaces": true,
209
+ "eos_token": "<|endoftext|>",
210
+ "model_max_length": 1000000000000000019884624838656,
211
+ "pad_token": "<|endoftext|>",
212
+ "tokenizer_class": "GPTNeoXTokenizer",
213
+ "unk_token": "<|endoftext|>"
214
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b32e745a350192568e708bf6194a9dba489c002fd53b28c1d49b5a55e8247024
3
+ size 5304