hash-map commited on
Commit
5e61f2a
·
verified ·
1 Parent(s): d689e83

Upload 20 files

Browse files
.gitattributes CHANGED
@@ -45,3 +45,18 @@ test_1426.png filter=lfs diff=lfs merge=lfs -text
45
  test_3104.png filter=lfs diff=lfs merge=lfs -text
46
  test_3105.png filter=lfs diff=lfs merge=lfs -text
47
  test_3111.png filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  test_3104.png filter=lfs diff=lfs merge=lfs -text
46
  test_3105.png filter=lfs diff=lfs merge=lfs -text
47
  test_3111.png filter=lfs diff=lfs merge=lfs -text
48
+ discriminator.png filter=lfs diff=lfs merge=lfs -text
49
+ epoch_001[[:space:]](2).png filter=lfs diff=lfs merge=lfs -text
50
+ epoch_007.png filter=lfs diff=lfs merge=lfs -text
51
+ epoch_100.png filter=lfs diff=lfs merge=lfs -text
52
+ ezgif-58298bca2da920.gif filter=lfs diff=lfs merge=lfs -text
53
+ gan_architecture_combined.png filter=lfs diff=lfs merge=lfs -text
54
+ generator.png filter=lfs diff=lfs merge=lfs -text
55
+ test_001.png filter=lfs diff=lfs merge=lfs -text
56
+ test_1179.png filter=lfs diff=lfs merge=lfs -text
57
+ test_12015.png filter=lfs diff=lfs merge=lfs -text
58
+ test_4884.png filter=lfs diff=lfs merge=lfs -text
59
+ test_5269.png filter=lfs diff=lfs merge=lfs -text
60
+ test_5361.png filter=lfs diff=lfs merge=lfs -text
61
+ test_7255.png filter=lfs diff=lfs merge=lfs -text
62
+ test_7362.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,13 +1,176 @@
1
- ---
2
- license: mit
3
- datasets:
4
- - UserNae3/LLVIP
5
- metrics: null
6
- L1 Loss: 0.0611
7
- PSNR: 24.3096
8
- SSIM: 0.8386
9
- library_name: tensorflow
10
- used losses : preceptual loss from vgg connv5_block4 , l1 loss,adversial loss , edge loss
11
- architecture : conditional gan with more wright to l1 loss (visible image to ir)
12
- pipeline_tag: image-to-image
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🌙 Conditional GAN for Visible → Infrared (LLVIP)
2
+
3
+ > **High-fidelity Visible-to-Infrared Translation using a Conditional GAN with Multi-Loss Optimization**
4
+
5
+ ---
6
+
7
+ ## 🧩 Overview
8
+
9
+ This project implements a **Conditional Generative Adversarial Network (cGAN)** trained to translate **visible-light (RGB)** images into **infrared (IR)** representations.
10
+
11
+ It leverages **multi-loss optimization** combining perceptual, pixel, adversarial, and edge-based objectives to generate sharp, realistic IR outputs that preserve both **scene structure** and **thermal contrast**.
12
+
13
+ A higher emphasis is given to **L1 loss**, ensuring that overall brightness and object boundaries remain consistent between visible and infrared domains.
14
+
15
+ ---
16
+
17
+ ## 📁 Dataset
18
+
19
+ - **Dataset:** [LLVIP Dataset](https://huggingface.co/datasets/UserNae3/LLVIP)
20
+ Paired **visible (RGB)** and **infrared (IR)** images under diverse lighting and background conditions.
21
+
22
+ ---
23
+
24
+ ## 🧠 Model Architecture
25
+
26
+ - **Type:** Conditional GAN (cGAN)
27
+ - **Direction:** *Visible → Infrared*
28
+ - **Framework:** TensorFlow
29
+ - **Pipeline Tag:** `image-to-image`
30
+ - **License:** MIT
31
+
32
+ ### 🧱 Generator
33
+ - U-Net encoder–decoder with skip connections
34
+ - Conditioned on RGB input
35
+ - Output: single-channel IR image
36
+
37
+ ### ⚔️ Discriminator
38
+ - PatchGAN (70×70 receptive field)
39
+ - Evaluates realism of local patches for fine detail learning
40
+
41
+ ---
42
+
43
+ ## ⚙️ Training Configuration
44
+
45
+ | Setting | Value |
46
+ |----------|--------|
47
+ | **Epochs** | 100 |
48
+ | **Steps per Epoch** | 376 |
49
+ | **Batch Size** | 4 |
50
+ | **Optimizer** | Adam (β₁ = 0.5, β₂ = 0.999) |
51
+ | **Learning Rate** | 2e-4 |
52
+ | **Precision** | Mixed (FP16/32) |
53
+ | **Hardware** | NVIDIA T4 (Kaggle GPU Runtime) |
54
+
55
+ ---
56
+
57
+ ## 💡 Multi-Loss Function Design
58
+
59
+ | Loss Type | Description | Weight (λ) | Purpose |
60
+ |------------|--------------|-------------|----------|
61
+ | **L1 Loss** | Pixel-wise mean absolute error between generated and real IR | **100** | Ensures global brightness & shape consistency |
62
+ | **Perceptual Loss (VGG)** | Feature loss from `conv5_block4` of pretrained VGG-19 | **10** | Captures high-level texture and semantic alignment |
63
+ | **Adversarial Loss** | Binary cross-entropy loss from PatchGAN discriminator | **1** | Encourages realistic IR texture generation |
64
+ | **Edge Loss** | Sobel/gradient difference between real & generated images | **5** | Enhances sharpness and edge clarity |
65
+
66
+ The **total generator loss** is computed as:
67
+ \[
68
+ L_{G} = \lambda_{L1} L_{L1} + \lambda_{perc} L_{perc} + \lambda_{adv} L_{adv} + \lambda_{edge} L_{edge}
69
+ \]
70
+
71
+ ---
72
+
73
+ ## 📊 Evaluation Metrics
74
+
75
+ | Metric | Definition | Result |
76
+ |---------|-------------|--------|
77
+ | **L1 Loss** | Mean absolute difference between generated and ground truth IR | **0.0611** |
78
+ | **PSNR (Peak Signal-to-Noise Ratio)** | Measures reconstruction quality (higher is better) | **24.3096 dB** |
79
+ | **SSIM (Structural Similarity Index Measure)** | Perceptual similarity between generated & target images | **0.8386** |
80
+
81
+ ---
82
+ ## 🏗️ Model Architectures
83
+
84
+ | Model | Visualization |
85
+ |-------|---------------|
86
+ | **Generator** | ![Generator Architecture](generator.png) |
87
+ | **Discriminator** | ![Discriminator Architecture](discriminator.png) |
88
+ | **Combined GAN** | ![GAN Architecture Combined](gan_architecture_combined.png) |
89
+
90
+ ---
91
+
92
+
93
+
94
+ ## 🖼️ Visual Results
95
+
96
+ ### 🎞️ Training Progress (Sample Evolution)
97
+ <img src="ezgif-58298bca2da920.gif" alt="Training Progress" width="700"/>
98
+
99
+ ### ✨ Final Convergence Samples
100
+ | Early Epochs (Blurry, Low Brightness) | Later Epochs (Sharper, High Contrast) |
101
+ |--------------------------------------|---------------------------------------|
102
+ | <img src="./epoch_007.png" width="550"/> | <img src="epoch_100.png" width="550"/> |
103
+
104
+ ### Comparison: Input vs Ground Truth vs Generated
105
+ | RGB Input- Ground Truth IR - Predicted IR |
106
+
107
+ | <img src="test_1179.png" width="750"/>
108
+ | <img src="test_001.png" width="750"/>
109
+ | <img src="test_4884.png" width="750"/>
110
+ | <img src="test_5269.png" width="750"/>
111
+ | <img src="test_5361.png" width="750"/>
112
+ | <img src="test_7255.png" width="750"/>
113
+ | <img src="test_7362.png" width="750"/>
114
+ | <img src="test_12015.png" width="750"/>
115
+ ---
116
+
117
+ ## 📈 Loss Curves
118
+
119
+ ### Generator & Discriminator Loss
120
+ <img src="./train_loss_curve.png" alt="Training Loss Curve" width="600"/>
121
+
122
+ ### Validation Loss per Epoch
123
+ <img src="./val_loss_curve.png" alt="Validation Loss Curve" width="600"/>
124
+
125
+ All training metrics are logged in:
126
+
127
+ ---
128
+ ```bash
129
+ /
130
+ ├── logs.log
131
+ └── loss_summary.csv
132
+ ```
133
+ ## 🧩 Observations
134
+
135
+ - The model **captures IR brightness and object distinction**, but early epochs show slight blur due to L1-dominant stages.
136
+ - **Contrast and edge sharpness improve** after ~70 epochs as adversarial and perceptual losses gain weight.
137
+ - Background variations in LLVIP introduce challenges; future fine-tuning on domain-aligned subsets can further improve realism.
138
+
139
+ ---
140
+
141
+ ## 🚀 Future Work
142
+
143
+ - Apply **feature matching loss** for smoother discriminator gradients
144
+ - Introduce **spectral normalization** for training stability
145
+ - Add **temporal or sequence consistency** for video IR translation
146
+ - Adaptive loss balancing with epoch-based dynamic weighting
147
+
148
+ ---
149
+ ❤️ Acknowledgements
150
+
151
+ LLVIP Dataset for paired RGB–IR samples
152
+
153
+ TensorFlow and VGG-19 for perceptual feature extraction
154
+
155
+ Kaggle GPU for high-performance model training
156
+
157
+ ## 📜 License
158
+
159
+ **MIT License © 2025**
160
+ Author: **Sai Sumanth Appala**
161
+
162
+ ---
163
+
164
+ ## 🧾 Citation
165
+
166
+ If you use this work, please cite:
167
+
168
+ ```bibtex
169
+ @misc{appala2025visible2ir,
170
+ author = {Appala, Sai Sumanth},
171
+ title = {Conditional GAN for Visible-to-Infrared Translation with Multi-Loss Training},
172
+ year = {2025},
173
+ license = {MIT},
174
+ dataset = {UserNae3/LLVIP},
175
+ framework = {TensorFlow},
176
+ }
discriminator.png ADDED

Git LFS Details

  • SHA256: 2433586ee3866365f1d1ea0eb66f03629a2ae8bd52c6e3125d6f6763b1d142c2
  • Pointer size: 131 Bytes
  • Size of remote file: 285 kB
epoch_001 (2).png ADDED

Git LFS Details

  • SHA256: 03d0ae0ae2dfdec9dfc953f1d41fc8b90703aeaba6a61a2ed192b4734ae97cd8
  • Pointer size: 132 Bytes
  • Size of remote file: 1.28 MB
epoch_007.png ADDED

Git LFS Details

  • SHA256: 4b5e85b9b8328f1dbb8cf47cfcb7695357382315939fa91214d5bfbe2d349204
  • Pointer size: 132 Bytes
  • Size of remote file: 1.14 MB
epoch_100.png ADDED

Git LFS Details

  • SHA256: 7abce893d02a15b77679732866dd378d364880d931743122e77c6d867f6fbfbc
  • Pointer size: 132 Bytes
  • Size of remote file: 1.15 MB
ezgif-58298bca2da920.gif ADDED

Git LFS Details

  • SHA256: f9b5fb641526b0d171918b1d204692ffcfd9413f7966ecfebfabd4d2ed2a1284
  • Pointer size: 132 Bytes
  • Size of remote file: 6.69 MB
gan_architecture_combined.png ADDED

Git LFS Details

  • SHA256: 0515269984d8ea671b2428ee0614313f0adfba0bf18630e08bf2838201930f25
  • Pointer size: 131 Bytes
  • Size of remote file: 866 kB
generator.png ADDED

Git LFS Details

  • SHA256: 937947d6caf8103beaba22a200174d5a4b9a6bf47f72b705a2ed0fe72a25d82e
  • Pointer size: 131 Bytes
  • Size of remote file: 711 kB
logs.log ADDED
@@ -0,0 +1,1016 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 6.4s 1 0.00s - Debugger warning: It seems that frozen modules are being used, which may
2
+ 6.4s 2 0.00s - make the debugger miss breakpoints. Please pass -Xfrozen_modules=off
3
+ 6.4s 3 0.00s - to python to disable frozen modules.
4
+ 6.4s 4 0.00s - Note: Debugging will proceed. Set PYDEVD_DISABLE_FILE_VALIDATION=1 to disable this validation.
5
+ 6.9s 5 0.00s - Debugger warning: It seems that frozen modules are being used, which may
6
+ 6.9s 6 0.00s - make the debugger miss breakpoints. Please pass -Xfrozen_modules=off
7
+ 6.9s 7 0.00s - to python to disable frozen modules.
8
+ 6.9s 8 0.00s - Note: Debugging will proceed. Set PYDEVD_DISABLE_FILE_VALIDATION=1 to disable this validation.
9
+ 11.5s 9 2025-10-20 18:18:33.354351: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
10
+ 11.5s 10 WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
11
+ 11.5s 11 E0000 00:00:1760984313.560693 19 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
12
+ 11.5s 12 E0000 00:00:1760984313.610912 19 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
13
+ 11.7s 13 2025-10-20 18:18:33.354351: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
14
+ 11.7s 14 WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
15
+ 11.7s 15 E0000 00:00:1760984313.560693 19 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
16
+ 11.7s 16 E0000 00:00:1760984313.610912 19 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
17
+ 25.0s 17 I0000 00:00:1760984327.609864 19 gpu_device.cc:2022] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 15513 MB memory: -> device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0, compute capability: 6.0
18
+ 25.2s 18 I0000 00:00:1760984327.609864 19 gpu_device.cc:2022] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 15513 MB memory: -> device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0, compute capability: 6.0
19
+ 28.3s 19 ✅ Frozen 25/36 layers (~70%)
20
+ 28.3s 20 input_layer False
21
+ 28.3s 21 conv2d False
22
+ 28.3s 22 leaky_re_lu False
23
+ 28.3s 23 conv2d_1 False
24
+ 28.3s 24 batch_normalization False
25
+ 28.3s 25 leaky_re_lu_1 False
26
+ 28.3s 26 conv2d_2 False
27
+ 28.3s 27 batch_normalization_1 False
28
+ 28.3s 28 leaky_re_lu_2 False
29
+ 28.3s 29 conv2d_3 False
30
+ 29.0s 30 ✅ Restored checkpoint from /kaggle/input/gen-var/tensorflow2/default/2/best_val.ckpt-42
31
+ 29.2s 31 376
32
+ 126.9s 32 Saved visualization to output/rgb_ir_pairs.png
33
+
34
+ 150.8s 38 Step 0/376 | G=10.1522 | D=0.7469
35
+ 195.9s 39 Step 100/376 | G=6.6517 | D=0.5214
36
+ 241.1s 40 Step 200/376 | G=6.5913 | D=0.6182
37
+ 286.3s 41 Step 300/376 | G=6.8534 | D=0.5289
38
+ 310.6s 44 Time 183.42s | G=6.1416 | D=0.5880
39
+ 319.1s 45 Val_loss=8.1308
40
+ 324.5s 46 🖼 Saved sample images to output/epoch_001.png
41
+ 324.9s 47 🏆 Best checkpoint updated | val_loss=8.1308
42
+ 337.5s 48 Step 0/376 | G=9.8777 | D=0.7159
43
+ 382.8s 49 Step 100/376 | G=6.7390 | D=0.4855
44
+ 428.0s 50 Step 200/376 | G=6.3669 | D=0.6654
45
+ 473.2s 51 Step 300/376 | G=6.0465 | D=0.5933
46
+ 494.8s 54 Time 169.87s | G=5.9655 | D=0.5861
47
+ 502.9s 55 Val_loss=8.0259
48
+ 506.1s 56 🖼 Saved sample images to output/epoch_002.png
49
+ 506.4s 57 🏆 Best checkpoint updated | val_loss=8.0259
50
+ 519.0s 58 Step 0/376 | G=8.9304 | D=0.8360
51
+ 564.2s 59 Step 100/376 | G=6.4695 | D=0.4651
52
+ 609.5s 60 Step 200/376 | G=6.2067 | D=0.6051
53
+ 654.7s 61 Step 300/376 | G=5.6935 | D=0.6093
54
+ 676.4s 64 Time 169.98s | G=5.8677 | D=0.5865
55
+ 684.4s 65 Val_loss=7.9718
56
+ 687.8s 66 🖼 Saved sample images to output/epoch_003.png
57
+ 688.1s 67 🏆 Best checkpoint updated | val_loss=7.9718
58
+ 700.6s 68 Step 0/376 | G=9.2573 | D=0.9514
59
+ 745.9s 69 Step 100/376 | G=6.8420 | D=0.5058
60
+ 791.1s 70 Step 200/376 | G=6.3702 | D=0.6503
61
+ 836.4s 71 Step 300/376 | G=5.8164 | D=0.5970
62
+ 857.6s 74 Time 169.54s | G=5.7606 | D=0.5877
63
+ 866.4s 75 Val_loss=7.9856
64
+ 869.5s 76 🖼 Saved sample images to output/epoch_004.png
65
+ 881.7s 77 Step 0/376 | G=10.5251 | D=0.7426
66
+ 927.0s 78 Step 100/376 | G=6.7499 | D=0.5435
67
+ 972.2s 79 Step 200/376 | G=5.7333 | D=0.6468
68
+ 1017.5s 80 Step 300/376 | G=5.3933 | D=0.6261
69
+
70
+
71
+ 1039.4s 83 Time 169.86s | G=5.7380 | D=0.5873
72
+ 1047.2s 84 Val_loss=7.8545
73
+ 1050.4s 85 🖼 Saved sample images to output/epoch_005.png
74
+ 1050.7s 86 🏆 Best checkpoint updated | val_loss=7.8545
75
+ 1051.0s 87 💾 Checkpoint saved at epoch 5
76
+ 1063.9s 88 Step 0/376 | G=8.6886 | D=0.7638
77
+ 1109.1s 89 Step 100/376 | G=5.7305 | D=0.5340
78
+ 1154.4s 90 Step 200/376 | G=7.4428 | D=0.6705
79
+ 1199.6s 91 Step 300/376 | G=5.7122 | D=0.5952
80
+
81
+
82
+ 1220.8s 94 Time 169.78s | G=5.6885 | D=0.5939
83
+ 1228.8s 95 Val_loss=7.7142
84
+ 1232.1s 96 🖼 Saved sample images to output/epoch_006.png
85
+ 1232.4s 97 🏆 Best checkpoint updated | val_loss=7.7142
86
+ 1245.2s 98 Step 0/376 | G=9.0071 | D=0.7516
87
+ 1290.4s 99 Step 100/376 | G=6.7447 | D=0.5066
88
+ 1335.7s 100 Step 200/376 | G=6.1205 | D=0.5977
89
+ 1380.9s 101 Step 300/376 | G=5.5829 | D=0.6040
90
+ 1
91
+ 1
92
+ 1402.1s 104 Time 169.68s | G=5.6324 | D=0.5936
93
+ 1410.3s 105 Val_loss=7.7325
94
+ 1413.3s 106 🖼 Saved sample images to output/epoch_007.png
95
+ 1426.5s 107 Step 0/376 | G=10.3457 | D=0.9597
96
+ 1471.8s 108 Step 100/376 | G=6.8666 | D=0.4757
97
+ 1517.0s 109 Step 200/376 | G=6.1979 | D=0.6157
98
+ 1562.3s 110 Step 300/376 | G=5.9637 | D=0.5726
99
+ 1
100
+ 1
101
+ 1583.5s 113 Time 170.18s | G=5.5638 | D=0.5961
102
+ 1593.8s 114 Val_loss=7.6370
103
+ 1597.0s 115 🖼 Saved sample images to output/epoch_008.png
104
+ 1597.3s 116 🏆 Best checkpoint updated | val_loss=7.6370
105
+ 1610.4s 117 Step 0/376 | G=8.4915 | D=0.8733
106
+ 1655.6s 118 Step 100/376 | G=6.3861 | D=0.5267
107
+ 1700.8s 119 Step 200/376 | G=5.5733 | D=0.6337
108
+ 1746.1s 120 Step 300/376 | G=5.4631 | D=0.6066
109
+ 1
110
+ 1
111
+ 1767.3s 123 Time 170.03s | G=5.5368 | D=0.5963
112
+ 1775.3s 124 Val_loss=7.6658
113
+ 1778.5s 125 🖼 Saved sample images to output/epoch_009.png
114
+ 1792.2s 126 Step 0/376 | G=8.7045 | D=0.7134
115
+ 1837.4s 127 Step 100/376 | G=5.7153 | D=0.5514
116
+ 1882.6s 128 Step 200/376 | G=6.2656 | D=0.5665
117
+ 1927.9s 129 Step 300/376 | G=5.5148 | D=0.5675
118
+ 1
119
+ 1
120
+ 1949.1s 132 Time 170.66s | G=5.4865 | D=0.5975
121
+ 1957.0s 133 Val_loss=7.6524
122
+ 1960.2s 134 🖼 Saved sample images to output/epoch_010.png
123
+ 1960.5s 135 💾 Checkpoint saved at epoch 10
124
+ 1972.8s 136 Step 0/376 | G=8.4238 | D=1.1631
125
+ 2018.0s 137 Step 100/376 | G=6.2513 | D=0.5029
126
+ 2063.3s 138 Step 200/376 | G=5.5215 | D=0.6579
127
+ 2108.5s 139 Step 300/376 | G=5.6408 | D=0.5814
128
+ 2
129
+ 2
130
+ 2131.1s 142 Time 170.57s | G=5.4401 | D=0.6039
131
+ 2141.4s 143 Val_loss=7.6458
132
+ 2144.6s 144 🖼 Saved sample images to output/epoch_011.png
133
+ 2156.6s 145 Step 0/376 | G=8.1797 | D=0.8865
134
+ 2201.8s 146 Step 100/376 | G=5.8403 | D=0.5265
135
+ 2247.0s 147 Step 200/376 | G=5.7694 | D=0.5645
136
+ 2292.3s 148 Step 300/376 | G=5.2140 | D=0.6485
137
+ 2
138
+ 2
139
+ 2313.4s 151 Time 168.75s | G=5.3909 | D=0.6007
140
+ 2323.7s 152 Val_loss=7.3745
141
+ 2326.7s 153 🖼 Saved sample images to output/epoch_012.png
142
+ 2327.0s 154 🏆 Best checkpoint updated | val_loss=7.3745
143
+ 2340.7s 155 Step 0/376 | G=9.7328 | D=0.9066
144
+ 2385.9s 156 Step 100/376 | G=6.2705 | D=0.6467
145
+ 2431.1s 157 Step 200/376 | G=5.6847 | D=0.6454
146
+ 2476.4s 158 Step 300/376 | G=5.2225 | D=0.5801
147
+ 2
148
+ 2
149
+ 2497.5s 161 Time 170.47s | G=5.3476 | D=0.6009
150
+ 2505.4s 162 Val_loss=7.5291
151
+ 2510.9s 163 🖼 Saved sample images to output/epoch_013.png
152
+ 2522.8s 164 Step 0/376 | G=9.2941 | D=0.9617
153
+ 2568.0s 165 Step 100/376 | G=6.2757 | D=0.6003
154
+ 2613.3s 166 Step 200/376 | G=5.7474 | D=0.6420
155
+ 2658.5s 167 Step 300/376 | G=5.2191 | D=0.5598
156
+ 2
157
+ 2
158
+ 2681.4s 170 Time 170.48s | G=5.2989 | D=0.6030
159
+ 2689.3s 171 Val_loss=7.3649
160
+ 2692.4s 172 🖼 Saved sample images to output/epoch_014.png
161
+ 2692.7s 173 🏆 Best checkpoint updated | val_loss=7.3649
162
+ 2704.3s 174 Step 0/376 | G=8.6483 | D=0.8423
163
+ 2749.5s 175 Step 100/376 | G=6.0136 | D=0.5458
164
+ 2794.8s 176 Step 200/376 | G=6.2493 | D=0.6051
165
+ 2840.0s 177 Step 300/376 | G=5.3029 | D=0.6275
166
+ 2
167
+ 2
168
+ 2861.2s 180 Time 168.48s | G=5.2628 | D=0.6038
169
+ 2869.1s 181 Val_loss=7.1946
170
+ 2872.3s 182 🖼 Saved sample images to output/epoch_015.png
171
+ 2872.6s 183 🏆 Best checkpoint updated | val_loss=7.1946
172
+ 2872.9s 184 💾 Checkpoint saved at epoch 15
173
+ 2886.9s 185 Step 0/376 | G=8.4540 | D=0.9136
174
+ 2932.2s 186 Step 100/376 | G=6.3066 | D=0.5660
175
+ 2977.5s 187 Step 200/376 | G=6.3131 | D=0.5907
176
+ 3022.7s 188 Step 300/376 | G=5.0895 | D=0.6121
177
+ 3
178
+ 3
179
+ 3044.0s 191 Time 171.06s | G=5.2323 | D=0.6049
180
+ 3051.8s 192 Val_loss=7.1181
181
+ 3054.8s 193 🖼 Saved sample images to output/epoch_016.png
182
+ 3055.1s 194 🏆 Best checkpoint updated | val_loss=7.1181
183
+ 3067.3s 195 Step 0/376 | G=8.3916 | D=1.0179
184
+ 3112.5s 196 Step 100/376 | G=6.2327 | D=0.5590
185
+ 3157.8s 197 Step 200/376 | G=5.5025 | D=0.6376
186
+ 3203.1s 198 Step 300/376 | G=5.2561 | D=0.5560
187
+ 3
188
+ 3
189
+ 3224.2s 201 Time 169.03s | G=5.1991 | D=0.6055
190
+ 3232.1s 202 Val_loss=7.2863
191
+ 3235.3s 203 🖼 Saved sample images to output/epoch_017.png
192
+ 3249.4s 204 Step 0/376 | G=8.9895 | D=0.8920
193
+ 3294.6s 205 Step 100/376 | G=6.2291 | D=0.5340
194
+ 3339.9s 206 Step 200/376 | G=5.6260 | D=0.5993
195
+ 3385.1s 207 Step 300/376 | G=5.1172 | D=0.6228
196
+ 3
197
+ 3
198
+ 3406.3s 210 Time 170.99s | G=5.1345 | D=0.6058
199
+ 3414.3s 211 Val_loss=7.0963
200
+ 3417.3s 212 🖼 Saved sample images to output/epoch_018.png
201
+ 3417.6s 213 🏆 Best checkpoint updated | val_loss=7.0963
202
+ 3429.7s 214 Step 0/376 | G=8.4496 | D=0.7219
203
+ 3475.0s 215 Step 100/376 | G=5.9285 | D=0.5680
204
+ 3520.2s 216 Step 200/376 | G=5.6910 | D=0.6167
205
+ 3565.5s 217 Step 300/376 | G=4.7538 | D=0.5893
206
+ 3
207
+ 3
208
+ 3586.7s 220 Time 169.04s | G=5.0872 | D=0.6078
209
+ 3594.6s 221 Val_loss=7.1790
210
+ 3597.6s 222 🖼 Saved sample images to output/epoch_019.png
211
+ 3611.9s 223 Step 0/376 | G=9.2708 | D=1.0899
212
+ 3657.1s 224 Step 100/376 | G=5.5898 | D=0.5551
213
+ 3702.4s 225 Step 200/376 | G=5.4319 | D=0.6237
214
+ 3747.7s 226 Step 300/376 | G=5.0019 | D=0.5962
215
+ 3
216
+ 3
217
+ 3768.9s 229 Time 171.20s | G=5.0589 | D=0.6095
218
+ 3777.0s 230 Val_loss=7.0951
219
+ 3780.0s 231 🖼 Saved sample images to output/epoch_020.png
220
+ 3780.3s 232 🏆 Best checkpoint updated | val_loss=7.0951
221
+ 3780.6s 233 💾 Checkpoint saved at epoch 20
222
+ 3792.7s 234 Step 0/376 | G=8.4845 | D=0.8562
223
+ 3837.9s 235 Step 100/376 | G=5.6454 | D=0.4984
224
+ 3883.2s 236 Step 200/376 | G=5.3433 | D=0.6519
225
+ 3928.5s 237 Step 300/376 | G=4.4948 | D=0.6561
226
+ 3
227
+ 3
228
+ 3949.8s 240 Time 169.10s | G=5.0314 | D=0.6069
229
+ 3957.6s 241 Val_loss=7.0698
230
+ 3960.9s 242 🖼 Saved sample images to output/epoch_021.png
231
+ 3961.2s 243 🏆 Best checkpoint updated | val_loss=7.0698
232
+ 3975.7s 244 Step 0/376 | G=8.8488 | D=0.7604
233
+ 4020.9s 245 Step 100/376 | G=5.4203 | D=0.5349
234
+ 4066.2s 246 Step 200/376 | G=5.7204 | D=0.6369
235
+ 4111.4s 247 Step 300/376 | G=4.9041 | D=0.5937
236
+ 4
237
+ 4
238
+ 4132.8s 250 Time 171.61s | G=5.0194 | D=0.6094
239
+ 4143.1s 251 Val_loss=7.0145
240
+ 4146.0s 252 🖼 Saved sample images to output/epoch_022.png
241
+ 4146.3s 253 🏆 Best checkpoint updated | val_loss=7.0145
242
+ 4158.4s 254 Step 0/376 | G=8.4787 | D=0.8817
243
+ 4203.6s 255 Step 100/376 | G=5.4149 | D=0.5902
244
+ 4248.9s 256 Step 200/376 | G=5.3208 | D=0.6242
245
+ 4294.2s 257 Step 300/376 | G=4.6400 | D=0.6054
246
+ 4
247
+ 4
248
+ 4315.3s 260 Time 168.93s | G=4.9605 | D=0.6119
249
+ 4323.1s 261 Val_loss=6.8700
250
+ 4326.3s 262 🖼 Saved sample images to output/epoch_023.png
251
+ 4326.6s 263 🏆 Best checkpoint updated | val_loss=6.8700
252
+ 4338.4s 264 Step 0/376 | G=7.5732 | D=0.6659
253
+ 4383.7s 265 Step 100/376 | G=5.9233 | D=0.4832
254
+ 4428.9s 266 Step 200/376 | G=5.2821 | D=0.6215
255
+ 4474.2s 267 Step 300/376 | G=5.0356 | D=0.6299
256
+ 4
257
+ 4
258
+ 4498.3s 270 Time 171.72s | G=4.9180 | D=0.6126
259
+ 4506.1s 271 Val_loss=6.9174
260
+ 4509.1s 272 🖼 Saved sample images to output/epoch_024.png
261
+ 4521.0s 273 Step 0/376 | G=7.4529 | D=0.8022
262
+ 4566.2s 274 Step 100/376 | G=5.4565 | D=0.5570
263
+ 4611.4s 275 Step 200/376 | G=4.8301 | D=0.7032
264
+ 4656.7s 276 Step 300/376 | G=4.8302 | D=0.6007
265
+ 4
266
+ 4
267
+ 4677.9s 279 Time 168.80s | G=4.8706 | D=0.6118
268
+ 4685.9s 280 Val_loss=6.7568
269
+ 4688.9s 281 🖼 Saved sample images to output/epoch_025.png
270
+ 4689.2s 282 🏆 Best checkpoint updated | val_loss=6.7568
271
+ 4689.5s 283 💾 Checkpoint saved at epoch 25
272
+ 4701.6s 284 Step 0/376 | G=8.1572 | D=0.9106
273
+ 4746.9s 285 Step 100/376 | G=5.4285 | D=0.5716
274
+ 4792.2s 286 Step 200/376 | G=5.1490 | D=0.6190
275
+ 4837.4s 287 Step 300/376 | G=4.6954 | D=0.6809
276
+ 4
277
+ 4
278
+ 4858.6s 290 Time 169.05s | G=4.8471 | D=0.6125
279
+ 4866.4s 291 Val_loss=7.1181
280
+ 4869.4s 292 🖼 Saved sample images to output/epoch_026.png
281
+ 4881.1s 293 Step 0/376 | G=7.8186 | D=0.7620
282
+ 4926.4s 294 Step 100/376 | G=5.3644 | D=0.5120
283
+ 4971.6s 295 Step 200/376 | G=5.7542 | D=0.6179
284
+ 5016.9s 296 Step 300/376 | G=4.6515 | D=0.6274
285
+ 5
286
+ 5
287
+ 5041.3s 299 Time 171.87s | G=4.8267 | D=0.6131
288
+ 5049.2s 300 Val_loss=6.8917
289
+ 5052.2s 301 🖼 Saved sample images to output/epoch_027.png
290
+ 5064.2s 302 Step 0/376 | G=8.3894 | D=0.8106
291
+ 5109.5s 303 Step 100/376 | G=6.2067 | D=0.6047
292
+ 5154.8s 304 Step 200/376 | G=4.9070 | D=0.6469
293
+ 5200.1s 305 Step 300/376 | G=4.5984 | D=0.6116
294
+ 5
295
+ 5
296
+ 5221.3s 308 Time 168.97s | G=4.7842 | D=0.6137
297
+ 5229.0s 309 Val_loss=6.8348
298
+ 5234.4s 310 🖼 Saved sample images to output/epoch_028.png
299
+ 5246.2s 311 Step 0/376 | G=7.6272 | D=0.8283
300
+ 5291.5s 312 Step 100/376 | G=5.3753 | D=0.5221
301
+ 5336.8s 313 Step 200/376 | G=4.9872 | D=0.6496
302
+ 5382.1s 314 Step 300/376 | G=4.4991 | D=0.6430
303
+ 5
304
+ 5
305
+ 5403.4s 317 Time 168.91s | G=4.7228 | D=0.6133
306
+ 5411.2s 318 Val_loss=6.9368
307
+ 5414.3s 319 🖼 Saved sample images to output/epoch_029.png
308
+ 5426.3s 320 Step 0/376 | G=7.4167 | D=0.6308
309
+ 5471.6s 321 Step 100/376 | G=5.3999 | D=0.5426
310
+ 5516.9s 322 Step 200/376 | G=4.8630 | D=0.5926
311
+ 5562.1s 323 Step 300/376 | G=4.7185 | D=0.6238
312
+ 5
313
+ 5
314
+ 5587.0s 326 Time 172.68s | G=4.7189 | D=0.6138
315
+ 5598.4s 327 Val_loss=6.5834
316
+ 5602.3s 328 🖼 Saved sample images to output/epoch_030.png
317
+ 5602.6s 329 🏆 Best checkpoint updated | val_loss=6.5834
318
+ 5603.0s 330 💾 Checkpoint saved at epoch 30
319
+ 5616.8s 331 Step 0/376 | G=8.3277 | D=0.5476
320
+ 5662.1s 332 Step 100/376 | G=5.4074 | D=0.6476
321
+ 5707.4s 333 Step 200/376 | G=4.6740 | D=0.6172
322
+ 5752.6s 334 Step 300/376 | G=4.4735 | D=0.6534
323
+ 5
324
+ 5
325
+ 5773.8s 337 Time 170.83s | G=4.6650 | D=0.6149
326
+ 5781.5s 338 Val_loss=6.5301
327
+ 5787.0s 339 🖼 Saved sample images to output/epoch_031.png
328
+ 5787.3s 340 🏆 Best checkpoint updated | val_loss=6.5301
329
+ 5799.3s 341 Step 0/376 | G=7.5849 | D=0.8446
330
+ 5844.5s 342 Step 100/376 | G=5.6047 | D=0.5846
331
+ 5889.8s 343 Step 200/376 | G=4.8021 | D=0.6334
332
+ 5935.1s 344 Step 300/376 | G=4.3887 | D=0.5969
333
+ 5
334
+ 5
335
+ 5956.4s 347 Time 169.06s | G=4.6389 | D=0.6163
336
+ 5964.4s 348 Val_loss=6.4039
337
+ 5967.4s 349 🖼 Saved sample images to output/epoch_032.png
338
+ 5967.7s 350 🏆 Best checkpoint updated | val_loss=6.4039
339
+ 5979.7s 351 Step 0/376 | G=7.6932 | D=0.7573
340
+ 6025.0s 352 Step 100/376 | G=5.4156 | D=0.5347
341
+ 6070.3s 353 Step 200/376 | G=4.9140 | D=0.6005
342
+ 6115.6s 354 Step 300/376 | G=4.5657 | D=0.6101
343
+ 6
344
+ 6
345
+ 6141.0s 357 Time 173.25s | G=4.6034 | D=0.6154
346
+ 6148.8s 358 Val_loss=6.4423
347
+ 6154.2s 359 🖼 Saved sample images to output/epoch_033.png
348
+ 6166.2s 360 Step 0/376 | G=7.7424 | D=0.6651
349
+ 6211.6s 361 Step 100/376 | G=5.2940 | D=0.6088
350
+ 6256.8s 362 Step 200/376 | G=4.7449 | D=0.6406
351
+ 6302.1s 363 Step 300/376 | G=4.1235 | D=0.6599
352
+ 6
353
+ 6
354
+ 6323.5s 366 Time 169.19s | G=4.5536 | D=0.6159
355
+ 6331.3s 367 Val_loss=6.5015
356
+ 6334.4s 368 🖼 Saved sample images to output/epoch_034.png
357
+ 6346.5s 369 Step 0/376 | G=7.2271 | D=0.8131
358
+ 6391.8s 370 Step 100/376 | G=5.8559 | D=0.5748
359
+ 6437.1s 371 Step 200/376 | G=5.1040 | D=0.6515
360
+ 6482.4s 372 Step 300/376 | G=4.3491 | D=0.5957
361
+ 6
362
+ 6
363
+ 6503.7s 375 Time 169.24s | G=4.5184 | D=0.6151
364
+ 6511.4s 376 Val_loss=6.4034
365
+ 6514.5s 377 🖼 Saved sample images to output/epoch_035.png
366
+ 6514.8s 378 🏆 Best checkpoint updated | val_loss=6.4034
367
+ 6515.1s 379 💾 Checkpoint saved at epoch 35
368
+ 6527.1s 380 Step 0/376 | G=7.3549 | D=0.7792
369
+ 6572.4s 381 Step 100/376 | G=5.3535 | D=0.6090
370
+ 6617.7s 382 Step 200/376 | G=4.7425 | D=0.6340
371
+ 6663.0s 383 Step 300/376 | G=4.8284 | D=0.6444
372
+ 6
373
+ 6
374
+ 6684.1s 386 Time 169.00s | G=4.5015 | D=0.6168
375
+ 6692.4s 387 Val_loss=6.3655
376
+ 6695.5s 388 🖼 Saved sample images to output/epoch_036.png
377
+ 6695.8s 389 🏆 Best checkpoint updated | val_loss=6.3655
378
+ 6712.8s 390 Step 0/376 | G=7.3334 | D=0.7174
379
+ 6758.1s 391 Step 100/376 | G=4.5692 | D=0.5397
380
+ 6803.4s 392 Step 200/376 | G=4.0998 | D=0.6367
381
+ 6848.7s 393 Step 300/376 | G=4.3749 | D=0.6307
382
+ 6
383
+ 6
384
+ 6869.9s 396 Time 174.06s | G=4.4665 | D=0.6189
385
+ 6877.7s 397 Val_loss=6.3378
386
+ 6880.9s 398 🖼 Saved sample images to output/epoch_037.png
387
+ 6881.2s 399 🏆 Best checkpoint updated | val_loss=6.3378
388
+ 6893.3s 400 Step 0/376 | G=7.1830 | D=0.6298
389
+ 6938.6s 401 Step 100/376 | G=4.8157 | D=0.5073
390
+ 6983.9s 402 Step 200/376 | G=5.0199 | D=0.6477
391
+ 7029.2s 403 Step 300/376 | G=4.1610 | D=0.5946
392
+ 7
393
+ 7
394
+ 7050.6s 406 Time 169.40s | G=4.4084 | D=0.6181
395
+ 7058.5s 407 Val_loss=6.3234
396
+ 7061.6s 408 🖼 Saved sample images to output/epoch_038.png
397
+ 7061.9s 409 🏆 Best checkpoint updated | val_loss=6.3234
398
+ 7074.0s 410 Step 0/376 | G=7.6214 | D=0.7791
399
+ 7119.3s 411 Step 100/376 | G=5.3714 | D=0.5909
400
+ 7164.6s 412 Step 200/376 | G=4.5973 | D=0.6268
401
+ 7209.9s 413 Step 300/376 | G=4.3019 | D=0.6437
402
+ 7
403
+ 7
404
+ 7231.1s 416 Time 169.22s | G=4.3977 | D=0.6163
405
+ 7239.1s 417 Val_loss=6.2702
406
+ 7242.2s 418 🖼 Saved sample images to output/epoch_039.png
407
+ 7242.5s 419 🏆 Best checkpoint updated | val_loss=6.2702
408
+ 7254.4s 420 Step 0/376 | G=7.7957 | D=0.8412
409
+ 7299.8s 421 Step 100/376 | G=4.8231 | D=0.5613
410
+ 7345.0s 422 Step 200/376 | G=5.2463 | D=0.6042
411
+ 7390.3s 423 Step 300/376 | G=4.1722 | D=0.6671
412
+ 7
413
+ 7
414
+ 7411.5s 426 Time 168.99s | G=4.3469 | D=0.6208
415
+ 7419.6s 427 Val_loss=6.2376
416
+ 7422.8s 428 🖼 Saved sample images to output/epoch_040.png
417
+ 7423.1s 429 🏆 Best checkpoint updated | val_loss=6.2376
418
+ 7423.4s 430 💾 Checkpoint saved at epoch 40
419
+ 7440.6s 431 Step 0/376 | G=7.9816 | D=0.7683
420
+ 7485.9s 432 Step 100/376 | G=5.5838 | D=0.5975
421
+ 7531.2s 433 Step 200/376 | G=5.0480 | D=0.6322
422
+ 7576.5s 434 Step 300/376 | G=4.3194 | D=0.5960
423
+ 7
424
+ 7
425
+ 7597.8s 437 Time 174.43s | G=4.3204 | D=0.6197
426
+ 7605.9s 438 Val_loss=6.2099
427
+ 7608.9s 439 🖼 Saved sample images to output/epoch_041.png
428
+ 7609.2s 440 🏆 Best checkpoint updated | val_loss=6.2099
429
+ 7621.3s 441 Step 0/376 | G=8.0320 | D=0.8083
430
+ 7666.6s 442 Step 100/376 | G=4.8852 | D=0.5922
431
+ 7711.9s 443 Step 200/376 | G=5.0478 | D=0.6280
432
+ 7757.2s 444 Step 300/376 | G=4.0726 | D=0.6006
433
+ 7
434
+ 7
435
+ 7778.6s 447 Time 169.32s | G=4.2921 | D=0.6179
436
+ 7786.6s 448 Val_loss=6.1295
437
+ 7789.7s 449 🖼 Saved sample images to output/epoch_042.png
438
+ 7790.0s 450 🏆 Best checkpoint updated | val_loss=6.1295
439
+ 7802.0s 451 Step 0/376 | G=7.7331 | D=0.7679
440
+ 7847.4s 452 Step 100/376 | G=4.7346 | D=0.5389
441
+ 7892.6s 453 Step 200/376 | G=4.4696 | D=0.6263
442
+ 7937.9s 454 Step 300/376 | G=3.9252 | D=0.5932
443
+ 7
444
+ 7
445
+ 7959.2s 457 Time 169.14s | G=4.2269 | D=0.6210
446
+ 7967.1s 458 Val_loss=5.9122
447
+ 7970.2s 459 🖼 Saved sample images to output/epoch_043.png
448
+ 7970.5s 460 🏆 Best checkpoint updated | val_loss=5.9122
449
+ 7982.6s 461 Step 0/376 | G=7.9052 | D=0.8564
450
+ 8028.0s 462 Step 100/376 | G=5.1935 | D=0.5575
451
+ 8073.2s 463 Step 200/376 | G=4.4812 | D=0.6561
452
+ 8118.6s 464 Step 300/376 | G=4.0348 | D=0.6358
453
+ 8
454
+ 8
455
+ 8139.9s 467 Time 169.36s | G=4.1986 | D=0.6204
456
+ 8147.8s 468 Val_loss=5.9393
457
+ 8150.9s 469 🖼 Saved sample images to output/epoch_044.png
458
+ 8163.0s 470 Step 0/376 | G=6.7050 | D=0.7443
459
+ 8208.3s 471 Step 100/376 | G=4.6833 | D=0.6071
460
+ 8253.6s 472 Step 200/376 | G=4.2582 | D=0.6225
461
+ 8298.9s 473 Step 300/376 | G=4.2085 | D=0.5813
462
+ 8
463
+ 8
464
+ 8325.9s 476 Time 174.92s | G=4.1790 | D=0.6226
465
+ 8333.7s 477 Val_loss=6.0035
466
+ 8336.8s 478 🖼 Saved sample images to output/epoch_045.png
467
+ 8337.1s 479 💾 Checkpoint saved at epoch 45
468
+ 8349.0s 480 Step 0/376 | G=7.1352 | D=0.5797
469
+ 8394.4s 481 Step 100/376 | G=4.8119 | D=0.6121
470
+ 8439.6s 482 Step 200/376 | G=4.1505 | D=0.6122
471
+ 8484.9s 483 Step 300/376 | G=4.3496 | D=0.6447
472
+ 8
473
+ 8
474
+ 8506.3s 486 Time 169.09s | G=4.1459 | D=0.6218
475
+ 8514.1s 487 Val_loss=5.9690
476
+ 8517.3s 488 🖼 Saved sample images to output/epoch_046.png
477
+ 8529.5s 489 Step 0/376 | G=7.1425 | D=0.8774
478
+ 8574.8s 490 Step 100/376 | G=5.0781 | D=0.6307
479
+ 8620.1s 491 Step 200/376 | G=4.3326 | D=0.6371
480
+ 8665.4s 492 Step 300/376 | G=4.1976 | D=0.6224
481
+ 8
482
+ 8
483
+ 8686.6s 495 Time 169.31s | G=4.0964 | D=0.6209
484
+ 8696.9s 496 Val_loss=5.9383
485
+ 8699.9s 497 🖼 Saved sample images to output/epoch_047.png
486
+ 8711.8s 498 Step 0/376 | G=7.2791 | D=0.6243
487
+ 8757.2s 499 Step 100/376 | G=5.2249 | D=0.5633
488
+ 8802.4s 500 Step 200/376 | G=4.2565 | D=0.6243
489
+ 8847.7s 501 Step 300/376 | G=3.9169 | D=0.6548
490
+ 8
491
+ 8
492
+ 8869.0s 504 Time 169.04s | G=4.0535 | D=0.6216
493
+ 8877.0s 505 Val_loss=5.9086
494
+ 8880.0s 506 🖼 Saved sample images to output/epoch_048.png
495
+ 8880.3s 507 🏆 Best checkpoint updated | val_loss=5.9086
496
+ 8892.4s 508 Step 0/376 | G=6.3896 | D=0.6278
497
+ 8937.8s 509 Step 100/376 | G=4.6246 | D=0.5498
498
+ 8983.1s 510 Step 200/376 | G=4.0058 | D=0.6666
499
+ 9028.4s 511 Step 300/376 | G=4.0673 | D=0.6080
500
+ 9
501
+ 9
502
+ 9049.6s 514 Time 169.30s | G=4.0225 | D=0.6231
503
+ 9057.5s 515 Val_loss=5.7599
504
+ 9063.0s 516 🖼 Saved sample images to output/epoch_049.png
505
+ 9063.3s 517 🏆 Best checkpoint updated | val_loss=5.7599
506
+ 9081.6s 518 Step 0/376 | G=7.1973 | D=0.8021
507
+ 9127.0s 519 Step 100/376 | G=4.7325 | D=0.6218
508
+ 9172.2s 520 Step 200/376 | G=4.7112 | D=0.6080
509
+ 9217.5s 521 Step 300/376 | G=3.7986 | D=0.6098
510
+ 9
511
+ 9
512
+ 9238.8s 524 Time 175.41s | G=3.9794 | D=0.6229
513
+ 9246.8s 525 Val_loss=5.6452
514
+ 9249.9s 526 🖼 Saved sample images to output/epoch_050.png
515
+ 9250.2s 527 🏆 Best checkpoint updated | val_loss=5.6452
516
+ 9250.5s 528 💾 Checkpoint saved at epoch 50
517
+ 9262.5s 529 Step 0/376 | G=7.3798 | D=0.6634
518
+ 9307.8s 530 Step 100/376 | G=4.4809 | D=0.5703
519
+ 9353.0s 531 Step 200/376 | G=4.3223 | D=0.6227
520
+ 9398.3s 532 Step 300/376 | G=3.7706 | D=0.6429
521
+ 9
522
+ 9
523
+ 9419.6s 535 Time 168.97s | G=3.9478 | D=0.6256
524
+ 9427.7s 536 Val_loss=5.6258
525
+ 9430.9s 537 🖼 Saved sample images to output/epoch_051.png
526
+ 9431.2s 538 🏆 Best checkpoint updated | val_loss=5.6258
527
+ 9443.4s 539 Step 0/376 | G=6.4754 | D=0.7115
528
+ 9488.7s 540 Step 100/376 | G=4.9335 | D=0.6201
529
+ 9534.0s 541 Step 200/376 | G=4.2455 | D=0.6402
530
+ 9579.2s 542 Step 300/376 | G=3.9834 | D=0.5999
531
+ 9
532
+ 9
533
+ 9600.5s 545 Time 169.29s | G=3.9202 | D=0.6241
534
+ 9608.7s 546 Val_loss=5.8241
535
+ 9612.0s 547 🖼 Saved sample images to output/epoch_052.png
536
+ 9624.1s 548 Step 0/376 | G=5.7289 | D=0.6756
537
+ 9669.4s 549 Step 100/376 | G=4.4836 | D=0.5917
538
+ 9714.6s 550 Step 200/376 | G=4.0337 | D=0.6521
539
+ 9759.9s 551 Step 300/376 | G=3.6739 | D=0.6380
540
+ 9
541
+ 9
542
+ 9781.3s 554 Time 169.29s | G=3.8781 | D=0.6227
543
+ 9789.1s 555 Val_loss=5.6002
544
+ 9794.6s 556 🖼 Saved sample images to output/epoch_053.png
545
+ 9794.9s 557 🏆 Best checkpoint updated | val_loss=5.6002
546
+ 9807.0s 558 Step 0/376 | G=7.2531 | D=0.6886
547
+ 9852.4s 559 Step 100/376 | G=4.5507 | D=0.5559
548
+ 9897.6s 560 Step 200/376 | G=4.0481 | D=0.6331
549
+ 9942.9s 561 Step 300/376 | G=3.7436 | D=0.6088
550
+ 9
551
+ 9
552
+ 9964.2s 564 Time 169.28s | G=3.8469 | D=0.6240
553
+ 9972.1s 565 Val_loss=5.4908
554
+ 9975.3s 566 🖼 Saved sample images to output/epoch_054.png
555
+ 9975.6s 567 🏆 Best checkpoint updated | val_loss=5.4908
556
+ 9987.4s 568 Step 0/376 | G=7.0989 | D=0.6965
557
+ 10032.8s 569 Step 100/376 | G=4.2875 | D=0.5799
558
+ 10078.0s 570 Step 200/376 | G=4.0449 | D=0.6357
559
+ 10123.3s 571 Step 300/376 | G=3.6967 | D=0.6392
560
+ 10
561
+ 10
562
+ 10151.4s 574 Time 175.80s | G=3.7968 | D=0.6261
563
+ 10159.4s 575 Val_loss=5.4853
564
+ 10162.5s 576 🖼 Saved sample images to output/epoch_055.png
565
+ 10162.8s 577 🏆 Best checkpoint updated | val_loss=5.4853
566
+ 10163.1s 578 💾 Checkpoint saved at epoch 55
567
+ 10175.1s 579 Step 0/376 | G=6.5453 | D=0.6883
568
+ 10220.4s 580 Step 100/376 | G=4.8273 | D=0.6235
569
+ 10265.6s 581 Step 200/376 | G=4.6326 | D=0.6328
570
+ 10310.9s 582 Step 300/376 | G=3.5085 | D=0.6500
571
+ 10
572
+ 10
573
+ 10332.0s 585 Time 168.89s | G=3.7650 | D=0.6280
574
+ 10339.9s 586 Val_loss=5.6348
575
+ 10345.4s 587 🖼 Saved sample images to output/epoch_056.png
576
+ 10357.5s 588 Step 0/376 | G=6.1980 | D=0.9013
577
+ 10402.8s 589 Step 100/376 | G=4.5555 | D=0.6144
578
+ 10448.1s 590 Step 200/376 | G=4.1018 | D=0.6405
579
+ 10493.3s 591 Step 300/376 | G=3.5860 | D=0.6230
580
+ 10
581
+ 10
582
+ 10514.5s 594 Time 169.16s | G=3.7293 | D=0.6259
583
+ 10524.8s 595 Val_loss=5.4346
584
+ 10527.9s 596 🖼 Saved sample images to output/epoch_057.png
585
+ 10528.2s 597 🏆 Best checkpoint updated | val_loss=5.4346
586
+ 10540.2s 598 Step 0/376 | G=6.5101 | D=0.5780
587
+ 10585.6s 599 Step 100/376 | G=4.2086 | D=0.5738
588
+ 10630.8s 600 Step 200/376 | G=4.3800 | D=0.6470
589
+ 10676.1s 601 Step 300/376 | G=3.6316 | D=0.6667
590
+ 10
591
+ 10
592
+ 10697.4s 604 Time 169.11s | G=3.7031 | D=0.6267
593
+ 10705.3s 605 Val_loss=5.2923
594
+ 10710.8s 606 🖼 Saved sample images to output/epoch_058.png
595
+ 10711.1s 607 🏆 Best checkpoint updated | val_loss=5.2923
596
+ 10723.1s 608 Step 0/376 | G=6.2087 | D=0.6703
597
+ 10768.5s 609 Step 100/376 | G=4.5461 | D=0.6209
598
+ 10813.8s 610 Step 200/376 | G=3.6366 | D=0.6273
599
+ 10859.2s 611 Step 300/376 | G=3.6145 | D=0.6185
600
+ 10
601
+ 10
602
+ 10880.5s 614 Time 169.39s | G=3.6572 | D=0.6265
603
+ 10888.5s 615 Val_loss=5.2706
604
+ 10891.8s 616 🖼 Saved sample images to output/epoch_059.png
605
+ 10892.1s 617 🏆 Best checkpoint updated | val_loss=5.2706
606
+ 10904.3s 618 Step 0/376 | G=5.6787 | D=0.6679
607
+ 10949.8s 619 Step 100/376 | G=4.4435 | D=0.6094
608
+ 10995.1s 620 Step 200/376 | G=3.8235 | D=0.6758
609
+ 11040.4s 621 Step 300/376 | G=3.6584 | D=0.6582
610
+ 11
611
+ 11
612
+ 11061.8s 624 Time 169.62s | G=3.6291 | D=0.6276
613
+ 11069.8s 625 Val_loss=5.4209
614
+ 11073.1s 626 🖼 Saved sample images to output/epoch_060.png
615
+ 11073.4s 627 💾 Checkpoint saved at epoch 60
616
+ 11093.5s 628 Step 0/376 | G=5.5204 | D=0.5549
617
+ 11138.9s 629 Step 100/376 | G=4.4152 | D=0.6049
618
+ 11184.1s 630 Step 200/376 | G=4.2356 | D=0.6240
619
+ 11229.4s 631 Step 300/376 | G=3.1710 | D=0.6618
620
+ 11
621
+ 11
622
+ 11250.8s 634 Time 177.28s | G=3.6050 | D=0.6300
623
+ 11261.0s 635 Val_loss=5.2053
624
+ 11264.1s 636 🖼 Saved sample images to output/epoch_061.png
625
+ 11264.5s 637 🏆 Best checkpoint updated | val_loss=5.2053
626
+ 11276.7s 638 Step 0/376 | G=7.0660 | D=0.8382
627
+ 11322.1s 639 Step 100/376 | G=4.7023 | D=0.5939
628
+ 11367.4s 640 Step 200/376 | G=3.4557 | D=0.6008
629
+ 11412.7s 641 Step 300/376 | G=3.1275 | D=0.6347
630
+ 11
631
+ 11
632
+ 11434.1s 644 Time 169.61s | G=3.5584 | D=0.6283
633
+ 11442.2s 645 Val_loss=5.2976
634
+ 11447.7s 646 🖼 Saved sample images to output/epoch_062.png
635
+ 11459.9s 647 Step 0/376 | G=6.1519 | D=0.6746
636
+ 11505.3s 648 Step 100/376 | G=4.0729 | D=0.6114
637
+ 11550.6s 649 Step 200/376 | G=3.5431 | D=0.6546
638
+ 11595.9s 650 Step 300/376 | G=3.3409 | D=0.6478
639
+ 11
640
+ 11
641
+ 11649.6s 653 Time 201.92s | G=3.5359 | D=0.6299
642
+ 11657.5s 654 Val_loss=5.2755
643
+ 11660.5s 655 🖼 Saved sample images to output/epoch_063.png
644
+ 11672.4s 656 Step 0/376 | G=5.7210 | D=0.7923
645
+ 11717.8s 657 Step 100/376 | G=4.3220 | D=0.6124
646
+ 11763.1s 658 Step 200/376 | G=3.8023 | D=0.6492
647
+ 11808.4s 659 Step 300/376 | G=3.4106 | D=0.6445
648
+ 11
649
+ 11
650
+ 11829.6s 662 Time 169.07s | G=3.4787 | D=0.6300
651
+ 11837.6s 663 Val_loss=5.1321
652
+ 11840.6s 664 🖼 Saved sample images to output/epoch_064.png
653
+ 11840.9s 665 🏆 Best checkpoint updated | val_loss=5.1321
654
+ 11852.7s 666 Step 0/376 | G=5.2394 | D=0.7294
655
+ 11898.1s 667 Step 100/376 | G=4.1536 | D=0.5974
656
+ 11943.5s 668 Step 200/376 | G=3.9781 | D=0.6169
657
+ 11988.7s 669 Step 300/376 | G=3.9450 | D=0.5819
658
+ 12
659
+ 12
660
+ 12010.0s 672 Time 169.00s | G=3.4519 | D=0.6294
661
+ 12017.9s 673 Val_loss=4.9427
662
+ 12023.4s 674 🖼 Saved sample images to output/epoch_065.png
663
+ 12023.7s 675 🏆 Best checkpoint updated | val_loss=4.9427
664
+ 12024.0s 676 💾 Checkpoint saved at epoch 65
665
+ 12035.8s 677 Step 0/376 | G=5.8535 | D=0.7737
666
+ 12081.2s 678 Step 100/376 | G=3.9873 | D=0.5937
667
+ 12126.5s 679 Step 200/376 | G=3.3124 | D=0.6624
668
+ 12171.8s 680 Step 300/376 | G=3.2737 | D=0.6563
669
+ 12
670
+ 12
671
+ 12193.4s 683 Time 169.36s | G=3.4109 | D=0.6314
672
+ 12201.4s 684 Val_loss=5.0014
673
+ 12204.6s 685 🖼 Saved sample images to output/epoch_066.png
674
+ 12216.8s 686 Step 0/376 | G=6.4397 | D=0.7202
675
+ 12262.2s 687 Step 100/376 | G=3.9876 | D=0.5936
676
+ 12307.5s 688 Step 200/376 | G=4.3265 | D=0.6032
677
+ 12352.9s 689 Step 300/376 | G=3.2042 | D=0.6529
678
+ 12
679
+ 12
680
+ 12384.2s 692 Time 179.63s | G=3.3774 | D=0.6329
681
+ 12392.2s 693 Val_loss=4.9945
682
+ 12395.2s 694 🖼 Saved sample images to output/epoch_067.png
683
+ 12407.7s 695 Step 0/376 | G=5.8329 | D=0.7105
684
+ 12453.1s 696 Step 100/376 | G=3.6485 | D=0.6176
685
+ 12498.5s 697 Step 200/376 | G=3.7839 | D=0.6328
686
+ 12543.8s 698 Step 300/376 | G=3.4857 | D=0.6119
687
+ 12
688
+ 12
689
+ 12565.1s 701 Time 169.76s | G=3.3480 | D=0.6318
690
+ 12573.0s 702 Val_loss=4.9362
691
+ 12576.0s 703 🖼 Saved sample images to output/epoch_068.png
692
+ 12576.3s 704 🏆 Best checkpoint updated | val_loss=4.9362
693
+ 12588.5s 705 Step 0/376 | G=5.4719 | D=0.7768
694
+ 12633.9s 706 Step 100/376 | G=3.8334 | D=0.6669
695
+ 12679.2s 707 Step 200/376 | G=3.6392 | D=0.6257
696
+ 12724.5s 708 Step 300/376 | G=3.1372 | D=0.6679
697
+ 12
698
+ 12
699
+ 12745.8s 711 Time 169.43s | G=3.3092 | D=0.6321
700
+ 12753.7s 712 Val_loss=4.8826
701
+ 12756.7s 713 🖼 Saved sample images to output/epoch_069.png
702
+ 12757.0s 714 🏆 Best checkpoint updated | val_loss=4.8826
703
+ 12769.0s 715 Step 0/376 | G=4.9498 | D=0.6127
704
+ 12814.4s 716 Step 100/376 | G=3.6878 | D=0.6158
705
+ 12859.7s 717 Step 200/376 | G=3.3736 | D=0.6621
706
+ 12905.0s 718 Step 300/376 | G=3.0053 | D=0.6262
707
+ 12
708
+ 12
709
+ 12926.4s 721 Time 169.29s | G=3.2584 | D=0.6321
710
+ 12934.4s 722 Val_loss=4.9833
711
+ 12937.4s 723 🖼 Saved sample images to output/epoch_070.png
712
+ 12937.7s 724 💾 Checkpoint saved at epoch 70
713
+ 12949.7s 725 Step 0/376 | G=5.6698 | D=0.6535
714
+ 12995.1s 726 Step 100/376 | G=3.8697 | D=0.6405
715
+ 13040.5s 727 Step 200/376 | G=3.9499 | D=0.6113
716
+ 13085.7s 728 Step 300/376 | G=3.0893 | D=0.6718
717
+ 13
718
+ 13
719
+ 13107.0s 731 Time 169.23s | G=3.2324 | D=0.6317
720
+ 13114.9s 732 Val_loss=4.7447
721
+ 13120.4s 733 🖼 Saved sample images to output/epoch_071.png
722
+ 13120.7s 734 🏆 Best checkpoint updated | val_loss=4.7447
723
+ 13132.8s 735 Step 0/376 | G=5.3708 | D=0.7000
724
+ 13178.2s 736 Step 100/376 | G=3.5859 | D=0.6146
725
+ 13223.5s 737 Step 200/376 | G=3.2398 | D=0.6210
726
+ 13268.8s 738 Step 300/376 | G=3.0854 | D=0.6507
727
+ 13
728
+ 13
729
+ 13290.0s 741 Time 169.27s | G=3.1795 | D=0.6347
730
+ 13298.0s 742 Val_loss=4.8294
731
+ 13301.0s 743 🖼 Saved sample images to output/epoch_072.png
732
+ 13313.0s 744 Step 0/376 | G=4.6913 | D=0.5467
733
+ 13358.4s 745 Step 100/376 | G=4.4168 | D=0.6707
734
+ 13403.7s 746 Step 200/376 | G=3.3704 | D=0.6365
735
+ 13449.1s 747 Step 300/376 | G=3.3304 | D=0.6046
736
+ 13
737
+ 13
738
+ 13470.4s 750 Time 169.37s | G=3.1613 | D=0.6319
739
+ 13478.4s 751 Val_loss=4.6030
740
+ 13481.5s 752 🖼 Saved sample images to output/epoch_073.png
741
+ 13481.8s 753 🏆 Best checkpoint updated | val_loss=4.6030
742
+ 13493.9s 754 Step 0/376 | G=6.5052 | D=0.6467
743
+ 13539.4s 755 Step 100/376 | G=4.0048 | D=0.5739
744
+ 13584.7s 756 Step 200/376 | G=3.2776 | D=0.6492
745
+ 13630.0s 757 Step 300/376 | G=2.9286 | D=0.5974
746
+ 13
747
+ 13
748
+ 13660.8s 760 Time 178.91s | G=3.1334 | D=0.6315
749
+ 13669.0s 761 Val_loss=4.5431
750
+ 13672.2s 762 🖼 Saved sample images to output/epoch_074.png
751
+ 13672.5s 763 🏆 Best checkpoint updated | val_loss=4.5431
752
+ 13684.6s 764 Step 0/376 | G=6.2637 | D=0.7287
753
+ 13730.0s 765 Step 100/376 | G=3.7316 | D=0.6523
754
+ 13775.3s 766 Step 200/376 | G=3.4680 | D=0.6680
755
+ 13820.6s 767 Step 300/376 | G=2.9001 | D=0.6955
756
+ 13
757
+ 13
758
+ 13842.0s 770 Time 169.46s | G=3.0860 | D=0.6342
759
+ 13850.2s 771 Val_loss=4.5978
760
+ 13855.7s 772 🖼 Saved sample images to output/epoch_075.png
761
+ 13856.0s 773 💾 Checkpoint saved at epoch 75
762
+ 13867.9s 774 Step 0/376 | G=5.3579 | D=0.7652
763
+ 13913.3s 775 Step 100/376 | G=3.6684 | D=0.5819
764
+ 13958.7s 776 Step 200/376 | G=3.1248 | D=0.6668
765
+ 14004.0s 777 Step 300/376 | G=2.9518 | D=0.6354
766
+ 14
767
+ 14
768
+ 14025.4s 780 Time 169.31s | G=3.0519 | D=0.6322
769
+ 14033.3s 781 Val_loss=4.6097
770
+ 14036.4s 782 🖼 Saved sample images to output/epoch_076.png
771
+ 14048.3s 783 Step 0/376 | G=5.4006 | D=0.7185
772
+ 14093.8s 784 Step 100/376 | G=3.6177 | D=0.5462
773
+ 14139.0s 785 Step 200/376 | G=2.7455 | D=0.6766
774
+ 14184.4s 786 Step 300/376 | G=2.7631 | D=0.6362
775
+ 14
776
+ 14
777
+ 14205.8s 789 Time 169.36s | G=3.0110 | D=0.6350
778
+ 14213.7s 790 Val_loss=4.5112
779
+ 14216.7s 791 🖼 Saved sample images to output/epoch_077.png
780
+ 14217.0s 792 🏆 Best checkpoint updated | val_loss=4.5112
781
+ 14229.1s 793 Step 0/376 | G=4.7770 | D=0.6762
782
+ 14274.5s 794 Step 100/376 | G=3.5976 | D=0.5739
783
+ 14319.8s 795 Step 200/376 | G=3.3589 | D=0.6383
784
+ 14365.1s 796 Step 300/376 | G=2.7231 | D=0.6584
785
+ 14
786
+ 14
787
+ 14386.6s 799 Time 169.60s | G=2.9787 | D=0.6366
788
+ 14394.7s 800 Val_loss=4.3760
789
+ 14397.7s 801 🖼 Saved sample images to output/epoch_078.png
790
+ 14398.0s 802 🏆 Best checkpoint updated | val_loss=4.3760
791
+ 14409.9s 803 Step 0/376 | G=5.0417 | D=0.6882
792
+ 14455.4s 804 Step 100/376 | G=3.4231 | D=0.5878
793
+ 14500.7s 805 Step 200/376 | G=3.2906 | D=0.6477
794
+ 14546.0s 806 Step 300/376 | G=2.6614 | D=0.6399
795
+ 14
796
+ 14
797
+ 14567.5s 809 Time 169.42s | G=2.9434 | D=0.6357
798
+ 14575.6s 810 Val_loss=4.5083
799
+ 14578.7s 811 🖼 Saved sample images to output/epoch_079.png
800
+ 14590.8s 812 Step 0/376 | G=6.9896 | D=0.6929
801
+ 14636.3s 813 Step 100/376 | G=3.5000 | D=0.5599
802
+ 14681.6s 814 Step 200/376 | G=2.8046 | D=0.6534
803
+ 14726.9s 815 Step 300/376 | G=3.1000 | D=0.6145
804
+ 14
805
+ 14
806
+ 14748.3s 818 Time 169.60s | G=2.9138 | D=0.6356
807
+ 14756.3s 819 Val_loss=4.2344
808
+ 14759.4s 820 🖼 Saved sample images to output/epoch_080.png
809
+ 14759.7s 821 🏆 Best checkpoint updated | val_loss=4.2344
810
+ 14760.0s 822 💾 Checkpoint saved at epoch 80
811
+ 14772.0s 823 Step 0/376 | G=4.8706 | D=0.7112
812
+ 14817.4s 824 Step 100/376 | G=3.4408 | D=0.5991
813
+ 14862.7s 825 Step 200/376 | G=3.0256 | D=0.6408
814
+ 14908.0s 826 Step 300/376 | G=2.7274 | D=0.6581
815
+ 14
816
+ 14
817
+ 14929.3s 829 Time 169.28s | G=2.8598 | D=0.6357
818
+ 14937.5s 830 Val_loss=4.3669
819
+ 14940.6s 831 🖼 Saved sample images to output/epoch_081.png
820
+ 14952.5s 832 Step 0/376 | G=5.5032 | D=0.7291
821
+ 14997.9s 833 Step 100/376 | G=3.8340 | D=0.6254
822
+ 15043.2s 834 Step 200/376 | G=2.8452 | D=0.6226
823
+ 15088.6s 835 Step 300/376 | G=2.7787 | D=0.6664
824
+ 15
825
+ 15
826
+ 15120.7s 838 Time 180.04s | G=2.8461 | D=0.6353
827
+ 15128.7s 839 Val_loss=4.2840
828
+ 15131.7s 840 🖼 Saved sample images to output/epoch_082.png
829
+ 15143.8s 841 Step 0/376 | G=5.1436 | D=0.6448
830
+ 15189.2s 842 Step 100/376 | G=2.9755 | D=0.5940
831
+ 15234.5s 843 Step 200/376 | G=2.9174 | D=0.6628
832
+ 15279.8s 844 Step 300/376 | G=2.6727 | D=0.6550
833
+ 15
834
+ 15
835
+ 15301.2s 847 Time 169.40s | G=2.8079 | D=0.6347
836
+ 15309.3s 848 Val_loss=4.1996
837
+ 15314.8s 849 🖼 Saved sample images to output/epoch_083.png
838
+ 15315.1s 850 🏆 Best checkpoint updated | val_loss=4.1996
839
+ 15327.1s 851 Step 0/376 | G=5.2726 | D=0.6822
840
+ 15372.5s 852 Step 100/376 | G=3.5970 | D=0.6313
841
+ 15417.8s 853 Step 200/376 | G=2.7029 | D=0.7004
842
+ 15463.1s 854 Step 300/376 | G=2.5813 | D=0.6395
843
+ 15
844
+ 15
845
+ 15484.5s 857 Time 169.34s | G=2.7617 | D=0.6356
846
+ 15492.4s 858 Val_loss=4.1724
847
+ 15495.5s 859 🖼 Saved sample images to output/epoch_084.png
848
+ 15495.8s 860 🏆 Best checkpoint updated | val_loss=4.1724
849
+ 15508.0s 861 Step 0/376 | G=4.6803 | D=0.6805
850
+ 15553.4s 862 Step 100/376 | G=3.2016 | D=0.6237
851
+ 15598.7s 863 Step 200/376 | G=3.1953 | D=0.6630
852
+ 15644.0s 864 Step 300/376 | G=2.6157 | D=0.7006
853
+ 15
854
+ 15
855
+ 15665.4s 867 Time 169.59s | G=2.7215 | D=0.6368
856
+ 15673.5s 868 Val_loss=4.1145
857
+ 15678.9s 869 🖼 Saved sample images to output/epoch_085.png
858
+ 15679.2s 870 🏆 Best checkpoint updated | val_loss=4.1145
859
+ 15679.6s 871 💾 Checkpoint saved at epoch 85
860
+ 15692.1s 872 Step 0/376 | G=4.8261 | D=0.7200
861
+ 15737.5s 873 Step 100/376 | G=3.7966 | D=0.6242
862
+ 15782.8s 874 Step 200/376 | G=3.2803 | D=0.6386
863
+ 15828.2s 875 Step 300/376 | G=2.5505 | D=0.6630
864
+ 15
865
+ 15
866
+ 15849.5s 878 Time 169.87s | G=2.6996 | D=0.6378
867
+ 15857.6s 879 Val_loss=4.2780
868
+ 15860.7s 880 🖼 Saved sample images to output/epoch_086.png
869
+ 15872.8s 881 Step 0/376 | G=4.3633 | D=0.6062
870
+ 15918.3s 882 Step 100/376 | G=3.3645 | D=0.5385
871
+ 15963.6s 883 Step 200/376 | G=2.5901 | D=0.6135
872
+ 16008.9s 884 Step 300/376 | G=2.7246 | D=0.5871
873
+ 16
874
+ 16
875
+ 16030.3s 887 Time 169.60s | G=2.6562 | D=0.6368
876
+ 16038.5s 888 Val_loss=4.0184
877
+ 16041.6s 889 🖼 Saved sample images to output/epoch_087.png
878
+ 16041.9s 890 🏆 Best checkpoint updated | val_loss=4.0184
879
+ 16054.0s 891 Step 0/376 | G=3.8949 | D=0.5574
880
+ 16099.5s 892 Step 100/376 | G=3.3085 | D=0.6019
881
+ 16144.8s 893 Step 200/376 | G=2.7265 | D=0.6345
882
+ 16190.1s 894 Step 300/376 | G=2.6312 | D=0.6203
883
+ 16
884
+ 16
885
+ 16211.3s 897 Time 169.44s | G=2.6140 | D=0.6363
886
+ 16219.4s 898 Val_loss=3.9724
887
+ 16224.8s 899 🖼 Saved sample images to output/epoch_088.png
888
+ 16225.1s 900 🏆 Best checkpoint updated | val_loss=3.9724
889
+ 16237.1s 901 Step 0/376 | G=4.5991 | D=0.5632
890
+ 16282.6s 902 Step 100/376 | G=3.1918 | D=0.6311
891
+ 16327.9s 903 Step 200/376 | G=2.8315 | D=0.6645
892
+ 16373.2s 904 Step 300/376 | G=2.4876 | D=0.6444
893
+ 16
894
+ 16
895
+ 16394.6s 907 Time 169.40s | G=2.5822 | D=0.6378
896
+ 16402.6s 908 Val_loss=4.0451
897
+ 16405.7s 909 🖼 Saved sample images to output/epoch_089.png
898
+ 16418.0s 910 Step 0/376 | G=4.6367 | D=0.6808
899
+ 16463.4s 911 Step 100/376 | G=3.2083 | D=0.5872
900
+ 16508.8s 912 Step 200/376 | G=2.9264 | D=0.6365
901
+ 16554.1s 913 Step 300/376 | G=2.1684 | D=0.6539
902
+ 16
903
+ 16
904
+ 16575.5s 916 Time 169.79s | G=2.5478 | D=0.6362
905
+ 16583.7s 917 Val_loss=3.9122
906
+ 16586.7s 918 🖼 Saved sample images to output/epoch_090.png
907
+ 16598.7s 919 🏆 Best checkpoint updated | val_loss=3.9122
908
+ 16599.2s 920 💾 Checkpoint saved at epoch 90
909
+ 16611.3s 921 Step 0/376 | G=4.0842 | D=0.7403
910
+ 16656.8s 922 Step 100/376 | G=3.0089 | D=0.5677
911
+ 16702.1s 923 Step 200/376 | G=2.7950 | D=0.6168
912
+ 16747.5s 924 Step 300/376 | G=2.4747 | D=0.6055
913
+ 16
914
+ 16
915
+ 16768.9s 927 Time 169.63s | G=2.4920 | D=0.6390
916
+ 16777.0s 928 Val_loss=3.8380
917
+ 16780.2s 929 🖼 Saved sample images to output/epoch_091.png
918
+ 16780.4s 930 🏆 Best checkpoint updated | val_loss=3.8380
919
+ 16792.9s 931 Step 0/376 | G=5.4327 | D=0.6846
920
+ 16838.4s 932 Step 100/376 | G=3.3698 | D=0.6232
921
+ 16883.7s 933 Step 200/376 | G=2.7433 | D=0.6527
922
+ 16929.0s 934 Step 300/376 | G=2.5256 | D=0.6204
923
+ 16
924
+ 16
925
+ 16950.3s 937 Time 169.84s | G=2.4625 | D=0.6406
926
+ 16958.5s 938 Val_loss=3.7432
927
+ 16961.6s 939 🖼 Saved sample images to output/epoch_092.png
928
+ 16961.9s 940 🏆 Best checkpoint updated | val_loss=3.7432
929
+ 16974.3s 941 Step 0/376 | G=3.5366 | D=0.5955
930
+ 17019.7s 942 Step 100/376 | G=3.5291 | D=0.5829
931
+ 17065.1s 943 Step 200/376 | G=2.5609 | D=0.6201
932
+ 17110.4s 944 Step 300/376 | G=2.5530 | D=0.6388
933
+ 17
934
+ 17
935
+ 17131.7s 947 Time 169.80s | G=2.4321 | D=0.6390
936
+ 17139.9s 948 Val_loss=3.8107
937
+ 17143.1s 949 🖼 Saved sample images to output/epoch_093.png
938
+ 17155.3s 950 Step 0/376 | G=4.7956 | D=0.7008
939
+ 17200.8s 951 Step 100/376 | G=3.2964 | D=0.6357
940
+ 17246.1s 952 Step 200/376 | G=2.7449 | D=0.6916
941
+ 17291.4s 953 Step 300/376 | G=2.3979 | D=0.6455
942
+ 17
943
+ 17
944
+ 17313.0s 956 Time 169.92s | G=2.4041 | D=0.6396
945
+ 17321.2s 957 Val_loss=3.6839
946
+ 17324.3s 958 🖼 Saved sample images to output/epoch_094.png
947
+ 17324.6s 959 🏆 Best checkpoint updated | val_loss=3.6839
948
+ 17336.8s 960 Step 0/376 | G=4.4018 | D=0.7070
949
+ 17382.2s 961 Step 100/376 | G=3.0409 | D=0.5230
950
+ 17427.6s 962 Step 200/376 | G=2.5092 | D=0.6279
951
+ 17472.9s 963 Step 300/376 | G=2.1991 | D=0.5932
952
+ 17
953
+ 17
954
+ 17494.1s 966 Time 169.47s | G=2.3599 | D=0.6390
955
+ 17502.3s 967 Val_loss=3.5712
956
+ 17505.4s 968 🖼 Saved sample images to output/epoch_095.png
957
+ 17505.7s 969 🏆 Best checkpoint updated | val_loss=3.5712
958
+ 17506.0s 970 💾 Checkpoint saved at epoch 95
959
+ 17518.2s 971 Step 0/376 | G=4.8006 | D=0.6310
960
+ 17563.7s 972 Step 100/376 | G=2.7726 | D=0.6086
961
+ 17609.0s 973 Step 200/376 | G=2.5687 | D=0.6676
962
+ 17654.3s 974 Step 300/376 | G=2.2540 | D=0.6034
963
+ 17
964
+ 17
965
+ 17675.7s 977 Time 169.57s | G=2.3281 | D=0.6411
966
+ 17683.8s 978 Val_loss=3.5431
967
+ 17686.8s 979 🖼 Saved sample images to output/epoch_096.png
968
+ 17687.1s 980 🏆 Best checkpoint updated | val_loss=3.5431
969
+ 17698.9s 981 Step 0/376 | G=3.7862 | D=0.7004
970
+ 17744.4s 982 Step 100/376 | G=2.4434 | D=0.5949
971
+ 17789.7s 983 Step 200/376 | G=2.2817 | D=0.6858
972
+ 17835.0s 984 Step 300/376 | G=2.2642 | D=0.6941
973
+ 17
974
+ 17
975
+ 17856.5s 987 Time 169.31s | G=2.2933 | D=0.6421
976
+ 17864.7s 988 Val_loss=3.5863
977
+ 17867.7s 989 🖼 Saved sample images to output/epoch_097.png
978
+ 17879.8s 990 Step 0/376 | G=3.7193 | D=0.5015
979
+ 17925.3s 991 Step 100/376 | G=2.9299 | D=0.6352
980
+ 17970.6s 992 Step 200/376 | G=2.1576 | D=0.6579
981
+ 18015.9s 993 Step 300/376 | G=2.2175 | D=0.6783
982
+ 18
983
+ 18
984
+ 18037.4s 996 Time 169.67s | G=2.2444 | D=0.6416
985
+ 18045.5s 997 Val_loss=3.4525
986
+ 18048.6s 998 🖼 Saved sample images to output/epoch_098.png
987
+ 18048.8s 999 🏆 Best checkpoint updated | val_loss=3.4525
988
+ 18060.8s 1000 Step 0/376 | G=4.0367 | D=0.5751
989
+ 18106.2s 1001 Step 100/376 | G=2.8571 | D=0.6623
990
+ 18151.5s 1002 Step 200/376 | G=2.0538 | D=0.7090
991
+ 18196.8s 1003 Step 300/376 | G=2.3591 | D=0.6435
992
+ 182
993
+ 182
994
+ 18218.2s 1006 Time 169.29s | G=2.2198 | D=0.6383
995
+ 18226.3s 1007 Val_loss=3.4924
996
+ 18229.4s 1008 🖼 Saved sample images to output/epoch_099.png
997
+ 18254.3s 1009 Step 0/376 | G=4.7228 | D=0.5148
998
+ 18299.9s 1010 Step 100/376 | G=2.9035 | D=0.5484
999
+ 18345.2s 1011 Step 200/376 | G=2.7119 | D=0.6533
1000
+ 18390.5s 1012 Step 300/376 | G=2.1389 | D=0.6548
1001
+ 184
1002
+ 184
1003
+ 18412.1s 1015 Time 182.69s | G=2.1891 | D=0.6406
1004
+ 18420.2s 1016 Val_loss=3.4315
1005
+ 18423.3s 1017 🖼 Saved sample images to output/epoch_100.png
1006
+ 18423.6s 1018 🏆 Best checkpoint updated | val_loss=3.4315
1007
+ 18423.9s 1019 💾 Checkpoint saved at epoch 100
1008
+ 18423.9s 1020 ✅ Training complete and models saved!
1009
+ 18487.2s 1021 ==== Test Dataset Metrics ====
1010
+ 18487.2s 1022 L1 Loss : 0.0570
1011
+ 18487.2s 1023 PSNR : 24.4505
1012
+ 18487.2s 1024 SSIM : 0.8575
1013
+ 19258.6s 1027 L1 Loss : 0.0570
1014
+ 19258.6s 1028 PSNR : 24.4500
1015
+ 19258.6s 1029 SSIM : 0.8576
1016
+ 19258.6s 1030 All predictions saved to output/test_results
loss_summary.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Epoch,Generator,Discriminator,Val_loss
2
+ 1,7.27804,0.60068,8.1308
3
+ 2,6.9991200000000005,0.60924,8.0259
4
+ 3,6.63356,0.6204,7.9718
5
+ 4,6.8093,0.65844,7.9856
6
+ 5,6.827920000000001,0.62926,7.8545
7
+ 6,6.65252,0.63148,7.7142
8
+ 7,6.617520000000001,0.6107,7.7325
9
+ 8,6.98754,0.6439600000000001,7.637
10
+ 9,6.29016,0.64732,7.6658
11
+ 10,6.33734,0.59926,7.6524
12
+ 11,6.2555,0.70184,7.6458
13
+ 12,6.078860000000001,0.64534,7.3745
14
+ 13,6.45162,0.67594,7.5291
15
+ 14,6.36704,0.67336,7.3649
16
+ 15,6.29538,0.6449,7.1946
17
+ 16,6.279100000000001,0.65746,7.1181
18
+ 17,6.1164000000000005,0.6752,7.2863
19
+ 18,6.21926,0.65078,7.0963
20
+ 19,5.98202,0.62074,7.179
21
+ 20,6.07066,0.69488,7.0951
22
+ 21,5.79988,0.6538999999999999,7.0698
23
+ 22,5.9826,0.62706,7.0145
24
+ 23,5.762980000000001,0.66268,6.87
25
+ 24,5.74644,0.60262,6.9174
26
+ 25,5.48806,0.65498,6.7568
27
+ 26,5.6554400000000005,0.67892,7.1181
28
+ 27,5.6830799999999995,0.62648,6.8917
29
+ 28,5.77714,0.6575,6.8348
30
+ 29,5.4423200000000005,0.65126,6.9368
31
+ 30,5.423399999999999,0.60072,6.5834
32
+ 31,5.50952,0.6161399999999999,6.5301
33
+ 32,5.40386,0.65516,6.4039
34
+ 33,5.43838,0.6235999999999999,6.4423
35
+ 34,5.29168,0.6380600000000001,6.5015
36
+ 35,5.4109,0.65004,6.4034
37
+ 36,5.35616,0.6566799999999999,6.3655
38
+ 37,4.9687600000000005,0.62868,6.3378
39
+ 38,5.1176,0.5995,6.3234
40
+ 39,5.25794,0.65136,6.2702
41
+ 40,5.27684,0.65892,6.2376
42
+ 41,5.45064,0.6427400000000001,6.2099
43
+ 42,5.26594,0.6494,6.1295
44
+ 43,5.01788,0.62946,5.9122
45
+ 44,5.16266,0.66524,5.9393
46
+ 45,4.8068,0.63556,6.0035
47
+ 46,4.91862,0.6141,5.969
48
+ 47,4.9694400000000005,0.6777,5.9383
49
+ 48,4.94618,0.6176600000000001,5.9086
50
+ 49,4.62196,0.6150599999999999,5.7599
51
+ 50,4.8838,0.6529200000000001,5.6452
52
+ 51,4.78028,0.6249800000000001,5.6258
53
+ 52,4.7116,0.6391600000000001,5.8241
54
+ 53,4.359640000000001,0.63602,5.6002
55
+ 54,4.68848,0.62208,5.4908
56
+ 55,4.584960000000001,0.63548,5.4853
57
+ 56,4.65574,0.64452,5.6348
58
+ 57,4.43412,0.68102,5.4346
59
+ 58,4.48668,0.61844,5.2923
60
+ 59,4.33262,0.6327,5.2706
61
+ 60,4.24664,0.64778,5.4209
62
+ 61,4.189439999999999,0.61512,5.2053
63
+ 62,4.38198,0.65918,5.2976
64
+ 63,4.12894,0.64366,5.2755
65
+ 64,4.14692,0.66568,5.1321
66
+ 65,4.1536,0.631,4.9427
67
+ 66,3.96756,0.6635,5.0014
68
+ 67,4.26708,0.64056,4.9945
69
+ 68,4.0198,0.64092,4.9362
70
+ 69,3.8781800000000004,0.67388,4.8826
71
+ 70,3.6549799999999997,0.62978,4.9833
72
+ 71,3.96222,0.64176,4.7447
73
+ 72,3.6922800000000002,0.6442,4.8294
74
+ 73,3.7940400000000003,0.61808,4.603
75
+ 74,3.9699200000000006,0.61974,4.5431
76
+ 75,3.8898800000000002,0.67574,4.5978
77
+ 76,3.6309600000000004,0.6563,4.6097
78
+ 77,3.50758,0.6425,4.5112
79
+ 78,3.4870600000000005,0.6366799999999999,4.376
80
+ 79,3.47204,0.63986,4.5083
81
+ 80,3.8616,0.6312599999999999,4.2344
82
+ 81,3.3848399999999996,0.6489800000000001,4.3669
83
+ 82,3.56144,0.65576,4.284
84
+ 83,3.30342,0.63826,4.1996
85
+ 84,3.3831,0.6578,4.1724
86
+ 85,3.28288,0.6609200000000001,4.1145
87
+ 86,3.4306200000000002,0.65672,4.278
88
+ 87,3.13974,0.59642,4.0184
89
+ 88,3.0350200000000003,0.61008,3.9724
90
+ 89,3.13844,0.6282,4.0451
91
+ 90,3.0975200000000003,0.6389199999999999,3.9122
92
+ 91,2.9709600000000003,0.63386,3.838
93
+ 92,3.30678,0.6443,3.7432
94
+ 93,2.92234,0.6152599999999999,3.8107
95
+ 94,3.12778,0.66264,3.6839
96
+ 95,2.90218,0.61802,3.5712
97
+ 96,2.9448,0.63034,3.5431
98
+ 97,2.61376,0.6634599999999999,3.5863
99
+ 98,2.65374,0.6229,3.4525
100
+ 99,2.7053000000000003,0.64564,3.4924
101
+ 100,2.93324,0.6023799999999999,3.4315
test_001.png ADDED

Git LFS Details

  • SHA256: f3ef471a65b79e9a285840c4b1e5787d5d66819e8c3ef517e5a78af721754e81
  • Pointer size: 131 Bytes
  • Size of remote file: 229 kB
test_1179.png ADDED

Git LFS Details

  • SHA256: b36b66c755c260d59c00bf5d7efc70eb56f3bef13dc91e856ba80d99645b04ad
  • Pointer size: 131 Bytes
  • Size of remote file: 268 kB
test_12015.png ADDED

Git LFS Details

  • SHA256: f6d6d6ecf8f875a56979ade39b9d3ba137e84ea798ae7c683ad30e06b41450e8
  • Pointer size: 131 Bytes
  • Size of remote file: 378 kB
test_4884.png ADDED

Git LFS Details

  • SHA256: 706e1f3187adcfedc1431ec927c1777f6313fff3da2d8d6348a32a6167f7223c
  • Pointer size: 131 Bytes
  • Size of remote file: 290 kB
test_5269.png ADDED

Git LFS Details

  • SHA256: b0722f3173e67f5baecea2f1b91ac2d8567bd531c8b9c5a2a1f9ea4155617723
  • Pointer size: 131 Bytes
  • Size of remote file: 211 kB
test_5361.png ADDED

Git LFS Details

  • SHA256: da495517b8a0856ba718a6a0538f711bd7f3f51355258ce96752708e52293440
  • Pointer size: 131 Bytes
  • Size of remote file: 238 kB
test_7255.png ADDED

Git LFS Details

  • SHA256: d91335308ef72718318edcbed97a098a46485714964d5eb47a74e2ec9f43c2a2
  • Pointer size: 131 Bytes
  • Size of remote file: 383 kB
test_7362.png ADDED

Git LFS Details

  • SHA256: ed2a2a3f566a03fb1396cf1e54e99710c72a0b2e1e2f910b2430bf01cec047f7
  • Pointer size: 131 Bytes
  • Size of remote file: 270 kB
train_loss_curve.png ADDED
val_loss_curve.png ADDED