Upload 20 files
Browse files- .gitattributes +15 -0
- README.md +176 -13
- discriminator.png +3 -0
- epoch_001 (2).png +3 -0
- epoch_007.png +3 -0
- epoch_100.png +3 -0
- ezgif-58298bca2da920.gif +3 -0
- gan_architecture_combined.png +3 -0
- generator.png +3 -0
- logs.log +1016 -0
- loss_summary.csv +101 -0
- test_001.png +3 -0
- test_1179.png +3 -0
- test_12015.png +3 -0
- test_4884.png +3 -0
- test_5269.png +3 -0
- test_5361.png +3 -0
- test_7255.png +3 -0
- test_7362.png +3 -0
- train_loss_curve.png +0 -0
- val_loss_curve.png +0 -0
.gitattributes
CHANGED
|
@@ -45,3 +45,18 @@ test_1426.png filter=lfs diff=lfs merge=lfs -text
|
|
| 45 |
test_3104.png filter=lfs diff=lfs merge=lfs -text
|
| 46 |
test_3105.png filter=lfs diff=lfs merge=lfs -text
|
| 47 |
test_3111.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
test_3104.png filter=lfs diff=lfs merge=lfs -text
|
| 46 |
test_3105.png filter=lfs diff=lfs merge=lfs -text
|
| 47 |
test_3111.png filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
discriminator.png filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
epoch_001[[:space:]](2).png filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
epoch_007.png filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
epoch_100.png filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
ezgif-58298bca2da920.gif filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
gan_architecture_combined.png filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
generator.png filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
test_001.png filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
test_1179.png filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
test_12015.png filter=lfs diff=lfs merge=lfs -text
|
| 58 |
+
test_4884.png filter=lfs diff=lfs merge=lfs -text
|
| 59 |
+
test_5269.png filter=lfs diff=lfs merge=lfs -text
|
| 60 |
+
test_5361.png filter=lfs diff=lfs merge=lfs -text
|
| 61 |
+
test_7255.png filter=lfs diff=lfs merge=lfs -text
|
| 62 |
+
test_7362.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,13 +1,176 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 🌙 Conditional GAN for Visible → Infrared (LLVIP)
|
| 2 |
+
|
| 3 |
+
> **High-fidelity Visible-to-Infrared Translation using a Conditional GAN with Multi-Loss Optimization**
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## 🧩 Overview
|
| 8 |
+
|
| 9 |
+
This project implements a **Conditional Generative Adversarial Network (cGAN)** trained to translate **visible-light (RGB)** images into **infrared (IR)** representations.
|
| 10 |
+
|
| 11 |
+
It leverages **multi-loss optimization** — combining perceptual, pixel, adversarial, and edge-based objectives — to generate sharp, realistic IR outputs that preserve both **scene structure** and **thermal contrast**.
|
| 12 |
+
|
| 13 |
+
A higher emphasis is given to **L1 loss**, ensuring that overall brightness and object boundaries remain consistent between visible and infrared domains.
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## 📁 Dataset
|
| 18 |
+
|
| 19 |
+
- **Dataset:** [LLVIP Dataset](https://huggingface.co/datasets/UserNae3/LLVIP)
|
| 20 |
+
Paired **visible (RGB)** and **infrared (IR)** images under diverse lighting and background conditions.
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
## 🧠 Model Architecture
|
| 25 |
+
|
| 26 |
+
- **Type:** Conditional GAN (cGAN)
|
| 27 |
+
- **Direction:** *Visible → Infrared*
|
| 28 |
+
- **Framework:** TensorFlow
|
| 29 |
+
- **Pipeline Tag:** `image-to-image`
|
| 30 |
+
- **License:** MIT
|
| 31 |
+
|
| 32 |
+
### 🧱 Generator
|
| 33 |
+
- U-Net encoder–decoder with skip connections
|
| 34 |
+
- Conditioned on RGB input
|
| 35 |
+
- Output: single-channel IR image
|
| 36 |
+
|
| 37 |
+
### ⚔️ Discriminator
|
| 38 |
+
- PatchGAN (70×70 receptive field)
|
| 39 |
+
- Evaluates realism of local patches for fine detail learning
|
| 40 |
+
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
## ⚙️ Training Configuration
|
| 44 |
+
|
| 45 |
+
| Setting | Value |
|
| 46 |
+
|----------|--------|
|
| 47 |
+
| **Epochs** | 100 |
|
| 48 |
+
| **Steps per Epoch** | 376 |
|
| 49 |
+
| **Batch Size** | 4 |
|
| 50 |
+
| **Optimizer** | Adam (β₁ = 0.5, β₂ = 0.999) |
|
| 51 |
+
| **Learning Rate** | 2e-4 |
|
| 52 |
+
| **Precision** | Mixed (FP16/32) |
|
| 53 |
+
| **Hardware** | NVIDIA T4 (Kaggle GPU Runtime) |
|
| 54 |
+
|
| 55 |
+
---
|
| 56 |
+
|
| 57 |
+
## 💡 Multi-Loss Function Design
|
| 58 |
+
|
| 59 |
+
| Loss Type | Description | Weight (λ) | Purpose |
|
| 60 |
+
|------------|--------------|-------------|----------|
|
| 61 |
+
| **L1 Loss** | Pixel-wise mean absolute error between generated and real IR | **100** | Ensures global brightness & shape consistency |
|
| 62 |
+
| **Perceptual Loss (VGG)** | Feature loss from `conv5_block4` of pretrained VGG-19 | **10** | Captures high-level texture and semantic alignment |
|
| 63 |
+
| **Adversarial Loss** | Binary cross-entropy loss from PatchGAN discriminator | **1** | Encourages realistic IR texture generation |
|
| 64 |
+
| **Edge Loss** | Sobel/gradient difference between real & generated images | **5** | Enhances sharpness and edge clarity |
|
| 65 |
+
|
| 66 |
+
The **total generator loss** is computed as:
|
| 67 |
+
\[
|
| 68 |
+
L_{G} = \lambda_{L1} L_{L1} + \lambda_{perc} L_{perc} + \lambda_{adv} L_{adv} + \lambda_{edge} L_{edge}
|
| 69 |
+
\]
|
| 70 |
+
|
| 71 |
+
---
|
| 72 |
+
|
| 73 |
+
## 📊 Evaluation Metrics
|
| 74 |
+
|
| 75 |
+
| Metric | Definition | Result |
|
| 76 |
+
|---------|-------------|--------|
|
| 77 |
+
| **L1 Loss** | Mean absolute difference between generated and ground truth IR | **0.0611** |
|
| 78 |
+
| **PSNR (Peak Signal-to-Noise Ratio)** | Measures reconstruction quality (higher is better) | **24.3096 dB** |
|
| 79 |
+
| **SSIM (Structural Similarity Index Measure)** | Perceptual similarity between generated & target images | **0.8386** |
|
| 80 |
+
|
| 81 |
+
---
|
| 82 |
+
## 🏗️ Model Architectures
|
| 83 |
+
|
| 84 |
+
| Model | Visualization |
|
| 85 |
+
|-------|---------------|
|
| 86 |
+
| **Generator** |  |
|
| 87 |
+
| **Discriminator** |  |
|
| 88 |
+
| **Combined GAN** |  |
|
| 89 |
+
|
| 90 |
+
---
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
## 🖼️ Visual Results
|
| 95 |
+
|
| 96 |
+
### 🎞️ Training Progress (Sample Evolution)
|
| 97 |
+
<img src="ezgif-58298bca2da920.gif" alt="Training Progress" width="700"/>
|
| 98 |
+
|
| 99 |
+
### ✨ Final Convergence Samples
|
| 100 |
+
| Early Epochs (Blurry, Low Brightness) | Later Epochs (Sharper, High Contrast) |
|
| 101 |
+
|--------------------------------------|---------------------------------------|
|
| 102 |
+
| <img src="./epoch_007.png" width="550"/> | <img src="epoch_100.png" width="550"/> |
|
| 103 |
+
|
| 104 |
+
### Comparison: Input vs Ground Truth vs Generated
|
| 105 |
+
| RGB Input- Ground Truth IR - Predicted IR |
|
| 106 |
+
|
| 107 |
+
| <img src="test_1179.png" width="750"/>
|
| 108 |
+
| <img src="test_001.png" width="750"/>
|
| 109 |
+
| <img src="test_4884.png" width="750"/>
|
| 110 |
+
| <img src="test_5269.png" width="750"/>
|
| 111 |
+
| <img src="test_5361.png" width="750"/>
|
| 112 |
+
| <img src="test_7255.png" width="750"/>
|
| 113 |
+
| <img src="test_7362.png" width="750"/>
|
| 114 |
+
| <img src="test_12015.png" width="750"/>
|
| 115 |
+
---
|
| 116 |
+
|
| 117 |
+
## 📈 Loss Curves
|
| 118 |
+
|
| 119 |
+
### Generator & Discriminator Loss
|
| 120 |
+
<img src="./train_loss_curve.png" alt="Training Loss Curve" width="600"/>
|
| 121 |
+
|
| 122 |
+
### Validation Loss per Epoch
|
| 123 |
+
<img src="./val_loss_curve.png" alt="Validation Loss Curve" width="600"/>
|
| 124 |
+
|
| 125 |
+
All training metrics are logged in:
|
| 126 |
+
|
| 127 |
+
---
|
| 128 |
+
```bash
|
| 129 |
+
/
|
| 130 |
+
├── logs.log
|
| 131 |
+
└── loss_summary.csv
|
| 132 |
+
```
|
| 133 |
+
## 🧩 Observations
|
| 134 |
+
|
| 135 |
+
- The model **captures IR brightness and object distinction**, but early epochs show slight blur due to L1-dominant stages.
|
| 136 |
+
- **Contrast and edge sharpness improve** after ~70 epochs as adversarial and perceptual losses gain weight.
|
| 137 |
+
- Background variations in LLVIP introduce challenges; future fine-tuning on domain-aligned subsets can further improve realism.
|
| 138 |
+
|
| 139 |
+
---
|
| 140 |
+
|
| 141 |
+
## 🚀 Future Work
|
| 142 |
+
|
| 143 |
+
- Apply **feature matching loss** for smoother discriminator gradients
|
| 144 |
+
- Introduce **spectral normalization** for training stability
|
| 145 |
+
- Add **temporal or sequence consistency** for video IR translation
|
| 146 |
+
- Adaptive loss balancing with epoch-based dynamic weighting
|
| 147 |
+
|
| 148 |
+
---
|
| 149 |
+
❤️ Acknowledgements
|
| 150 |
+
|
| 151 |
+
LLVIP Dataset for paired RGB–IR samples
|
| 152 |
+
|
| 153 |
+
TensorFlow and VGG-19 for perceptual feature extraction
|
| 154 |
+
|
| 155 |
+
Kaggle GPU for high-performance model training
|
| 156 |
+
|
| 157 |
+
## 📜 License
|
| 158 |
+
|
| 159 |
+
**MIT License © 2025**
|
| 160 |
+
Author: **Sai Sumanth Appala**
|
| 161 |
+
|
| 162 |
+
---
|
| 163 |
+
|
| 164 |
+
## 🧾 Citation
|
| 165 |
+
|
| 166 |
+
If you use this work, please cite:
|
| 167 |
+
|
| 168 |
+
```bibtex
|
| 169 |
+
@misc{appala2025visible2ir,
|
| 170 |
+
author = {Appala, Sai Sumanth},
|
| 171 |
+
title = {Conditional GAN for Visible-to-Infrared Translation with Multi-Loss Training},
|
| 172 |
+
year = {2025},
|
| 173 |
+
license = {MIT},
|
| 174 |
+
dataset = {UserNae3/LLVIP},
|
| 175 |
+
framework = {TensorFlow},
|
| 176 |
+
}
|
discriminator.png
ADDED
|
Git LFS Details
|
epoch_001 (2).png
ADDED
|
Git LFS Details
|
epoch_007.png
ADDED
|
Git LFS Details
|
epoch_100.png
ADDED
|
Git LFS Details
|
ezgif-58298bca2da920.gif
ADDED
|
Git LFS Details
|
gan_architecture_combined.png
ADDED
|
Git LFS Details
|
generator.png
ADDED
|
Git LFS Details
|
logs.log
ADDED
|
@@ -0,0 +1,1016 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
6.4s 1 0.00s - Debugger warning: It seems that frozen modules are being used, which may
|
| 2 |
+
6.4s 2 0.00s - make the debugger miss breakpoints. Please pass -Xfrozen_modules=off
|
| 3 |
+
6.4s 3 0.00s - to python to disable frozen modules.
|
| 4 |
+
6.4s 4 0.00s - Note: Debugging will proceed. Set PYDEVD_DISABLE_FILE_VALIDATION=1 to disable this validation.
|
| 5 |
+
6.9s 5 0.00s - Debugger warning: It seems that frozen modules are being used, which may
|
| 6 |
+
6.9s 6 0.00s - make the debugger miss breakpoints. Please pass -Xfrozen_modules=off
|
| 7 |
+
6.9s 7 0.00s - to python to disable frozen modules.
|
| 8 |
+
6.9s 8 0.00s - Note: Debugging will proceed. Set PYDEVD_DISABLE_FILE_VALIDATION=1 to disable this validation.
|
| 9 |
+
11.5s 9 2025-10-20 18:18:33.354351: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
|
| 10 |
+
11.5s 10 WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
|
| 11 |
+
11.5s 11 E0000 00:00:1760984313.560693 19 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
|
| 12 |
+
11.5s 12 E0000 00:00:1760984313.610912 19 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
|
| 13 |
+
11.7s 13 2025-10-20 18:18:33.354351: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
|
| 14 |
+
11.7s 14 WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
|
| 15 |
+
11.7s 15 E0000 00:00:1760984313.560693 19 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
|
| 16 |
+
11.7s 16 E0000 00:00:1760984313.610912 19 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
|
| 17 |
+
25.0s 17 I0000 00:00:1760984327.609864 19 gpu_device.cc:2022] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 15513 MB memory: -> device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0, compute capability: 6.0
|
| 18 |
+
25.2s 18 I0000 00:00:1760984327.609864 19 gpu_device.cc:2022] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 15513 MB memory: -> device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0, compute capability: 6.0
|
| 19 |
+
28.3s 19 ✅ Frozen 25/36 layers (~70%)
|
| 20 |
+
28.3s 20 input_layer False
|
| 21 |
+
28.3s 21 conv2d False
|
| 22 |
+
28.3s 22 leaky_re_lu False
|
| 23 |
+
28.3s 23 conv2d_1 False
|
| 24 |
+
28.3s 24 batch_normalization False
|
| 25 |
+
28.3s 25 leaky_re_lu_1 False
|
| 26 |
+
28.3s 26 conv2d_2 False
|
| 27 |
+
28.3s 27 batch_normalization_1 False
|
| 28 |
+
28.3s 28 leaky_re_lu_2 False
|
| 29 |
+
28.3s 29 conv2d_3 False
|
| 30 |
+
29.0s 30 ✅ Restored checkpoint from /kaggle/input/gen-var/tensorflow2/default/2/best_val.ckpt-42
|
| 31 |
+
29.2s 31 376
|
| 32 |
+
126.9s 32 Saved visualization to output/rgb_ir_pairs.png
|
| 33 |
+
|
| 34 |
+
150.8s 38 Step 0/376 | G=10.1522 | D=0.7469
|
| 35 |
+
195.9s 39 Step 100/376 | G=6.6517 | D=0.5214
|
| 36 |
+
241.1s 40 Step 200/376 | G=6.5913 | D=0.6182
|
| 37 |
+
286.3s 41 Step 300/376 | G=6.8534 | D=0.5289
|
| 38 |
+
310.6s 44 Time 183.42s | G=6.1416 | D=0.5880
|
| 39 |
+
319.1s 45 Val_loss=8.1308
|
| 40 |
+
324.5s 46 🖼 Saved sample images to output/epoch_001.png
|
| 41 |
+
324.9s 47 🏆 Best checkpoint updated | val_loss=8.1308
|
| 42 |
+
337.5s 48 Step 0/376 | G=9.8777 | D=0.7159
|
| 43 |
+
382.8s 49 Step 100/376 | G=6.7390 | D=0.4855
|
| 44 |
+
428.0s 50 Step 200/376 | G=6.3669 | D=0.6654
|
| 45 |
+
473.2s 51 Step 300/376 | G=6.0465 | D=0.5933
|
| 46 |
+
494.8s 54 Time 169.87s | G=5.9655 | D=0.5861
|
| 47 |
+
502.9s 55 Val_loss=8.0259
|
| 48 |
+
506.1s 56 🖼 Saved sample images to output/epoch_002.png
|
| 49 |
+
506.4s 57 🏆 Best checkpoint updated | val_loss=8.0259
|
| 50 |
+
519.0s 58 Step 0/376 | G=8.9304 | D=0.8360
|
| 51 |
+
564.2s 59 Step 100/376 | G=6.4695 | D=0.4651
|
| 52 |
+
609.5s 60 Step 200/376 | G=6.2067 | D=0.6051
|
| 53 |
+
654.7s 61 Step 300/376 | G=5.6935 | D=0.6093
|
| 54 |
+
676.4s 64 Time 169.98s | G=5.8677 | D=0.5865
|
| 55 |
+
684.4s 65 Val_loss=7.9718
|
| 56 |
+
687.8s 66 🖼 Saved sample images to output/epoch_003.png
|
| 57 |
+
688.1s 67 🏆 Best checkpoint updated | val_loss=7.9718
|
| 58 |
+
700.6s 68 Step 0/376 | G=9.2573 | D=0.9514
|
| 59 |
+
745.9s 69 Step 100/376 | G=6.8420 | D=0.5058
|
| 60 |
+
791.1s 70 Step 200/376 | G=6.3702 | D=0.6503
|
| 61 |
+
836.4s 71 Step 300/376 | G=5.8164 | D=0.5970
|
| 62 |
+
857.6s 74 Time 169.54s | G=5.7606 | D=0.5877
|
| 63 |
+
866.4s 75 Val_loss=7.9856
|
| 64 |
+
869.5s 76 🖼 Saved sample images to output/epoch_004.png
|
| 65 |
+
881.7s 77 Step 0/376 | G=10.5251 | D=0.7426
|
| 66 |
+
927.0s 78 Step 100/376 | G=6.7499 | D=0.5435
|
| 67 |
+
972.2s 79 Step 200/376 | G=5.7333 | D=0.6468
|
| 68 |
+
1017.5s 80 Step 300/376 | G=5.3933 | D=0.6261
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
1039.4s 83 Time 169.86s | G=5.7380 | D=0.5873
|
| 72 |
+
1047.2s 84 Val_loss=7.8545
|
| 73 |
+
1050.4s 85 🖼 Saved sample images to output/epoch_005.png
|
| 74 |
+
1050.7s 86 🏆 Best checkpoint updated | val_loss=7.8545
|
| 75 |
+
1051.0s 87 💾 Checkpoint saved at epoch 5
|
| 76 |
+
1063.9s 88 Step 0/376 | G=8.6886 | D=0.7638
|
| 77 |
+
1109.1s 89 Step 100/376 | G=5.7305 | D=0.5340
|
| 78 |
+
1154.4s 90 Step 200/376 | G=7.4428 | D=0.6705
|
| 79 |
+
1199.6s 91 Step 300/376 | G=5.7122 | D=0.5952
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
1220.8s 94 Time 169.78s | G=5.6885 | D=0.5939
|
| 83 |
+
1228.8s 95 Val_loss=7.7142
|
| 84 |
+
1232.1s 96 🖼 Saved sample images to output/epoch_006.png
|
| 85 |
+
1232.4s 97 🏆 Best checkpoint updated | val_loss=7.7142
|
| 86 |
+
1245.2s 98 Step 0/376 | G=9.0071 | D=0.7516
|
| 87 |
+
1290.4s 99 Step 100/376 | G=6.7447 | D=0.5066
|
| 88 |
+
1335.7s 100 Step 200/376 | G=6.1205 | D=0.5977
|
| 89 |
+
1380.9s 101 Step 300/376 | G=5.5829 | D=0.6040
|
| 90 |
+
1
|
| 91 |
+
1
|
| 92 |
+
1402.1s 104 Time 169.68s | G=5.6324 | D=0.5936
|
| 93 |
+
1410.3s 105 Val_loss=7.7325
|
| 94 |
+
1413.3s 106 🖼 Saved sample images to output/epoch_007.png
|
| 95 |
+
1426.5s 107 Step 0/376 | G=10.3457 | D=0.9597
|
| 96 |
+
1471.8s 108 Step 100/376 | G=6.8666 | D=0.4757
|
| 97 |
+
1517.0s 109 Step 200/376 | G=6.1979 | D=0.6157
|
| 98 |
+
1562.3s 110 Step 300/376 | G=5.9637 | D=0.5726
|
| 99 |
+
1
|
| 100 |
+
1
|
| 101 |
+
1583.5s 113 Time 170.18s | G=5.5638 | D=0.5961
|
| 102 |
+
1593.8s 114 Val_loss=7.6370
|
| 103 |
+
1597.0s 115 🖼 Saved sample images to output/epoch_008.png
|
| 104 |
+
1597.3s 116 🏆 Best checkpoint updated | val_loss=7.6370
|
| 105 |
+
1610.4s 117 Step 0/376 | G=8.4915 | D=0.8733
|
| 106 |
+
1655.6s 118 Step 100/376 | G=6.3861 | D=0.5267
|
| 107 |
+
1700.8s 119 Step 200/376 | G=5.5733 | D=0.6337
|
| 108 |
+
1746.1s 120 Step 300/376 | G=5.4631 | D=0.6066
|
| 109 |
+
1
|
| 110 |
+
1
|
| 111 |
+
1767.3s 123 Time 170.03s | G=5.5368 | D=0.5963
|
| 112 |
+
1775.3s 124 Val_loss=7.6658
|
| 113 |
+
1778.5s 125 🖼 Saved sample images to output/epoch_009.png
|
| 114 |
+
1792.2s 126 Step 0/376 | G=8.7045 | D=0.7134
|
| 115 |
+
1837.4s 127 Step 100/376 | G=5.7153 | D=0.5514
|
| 116 |
+
1882.6s 128 Step 200/376 | G=6.2656 | D=0.5665
|
| 117 |
+
1927.9s 129 Step 300/376 | G=5.5148 | D=0.5675
|
| 118 |
+
1
|
| 119 |
+
1
|
| 120 |
+
1949.1s 132 Time 170.66s | G=5.4865 | D=0.5975
|
| 121 |
+
1957.0s 133 Val_loss=7.6524
|
| 122 |
+
1960.2s 134 🖼 Saved sample images to output/epoch_010.png
|
| 123 |
+
1960.5s 135 💾 Checkpoint saved at epoch 10
|
| 124 |
+
1972.8s 136 Step 0/376 | G=8.4238 | D=1.1631
|
| 125 |
+
2018.0s 137 Step 100/376 | G=6.2513 | D=0.5029
|
| 126 |
+
2063.3s 138 Step 200/376 | G=5.5215 | D=0.6579
|
| 127 |
+
2108.5s 139 Step 300/376 | G=5.6408 | D=0.5814
|
| 128 |
+
2
|
| 129 |
+
2
|
| 130 |
+
2131.1s 142 Time 170.57s | G=5.4401 | D=0.6039
|
| 131 |
+
2141.4s 143 Val_loss=7.6458
|
| 132 |
+
2144.6s 144 🖼 Saved sample images to output/epoch_011.png
|
| 133 |
+
2156.6s 145 Step 0/376 | G=8.1797 | D=0.8865
|
| 134 |
+
2201.8s 146 Step 100/376 | G=5.8403 | D=0.5265
|
| 135 |
+
2247.0s 147 Step 200/376 | G=5.7694 | D=0.5645
|
| 136 |
+
2292.3s 148 Step 300/376 | G=5.2140 | D=0.6485
|
| 137 |
+
2
|
| 138 |
+
2
|
| 139 |
+
2313.4s 151 Time 168.75s | G=5.3909 | D=0.6007
|
| 140 |
+
2323.7s 152 Val_loss=7.3745
|
| 141 |
+
2326.7s 153 🖼 Saved sample images to output/epoch_012.png
|
| 142 |
+
2327.0s 154 🏆 Best checkpoint updated | val_loss=7.3745
|
| 143 |
+
2340.7s 155 Step 0/376 | G=9.7328 | D=0.9066
|
| 144 |
+
2385.9s 156 Step 100/376 | G=6.2705 | D=0.6467
|
| 145 |
+
2431.1s 157 Step 200/376 | G=5.6847 | D=0.6454
|
| 146 |
+
2476.4s 158 Step 300/376 | G=5.2225 | D=0.5801
|
| 147 |
+
2
|
| 148 |
+
2
|
| 149 |
+
2497.5s 161 Time 170.47s | G=5.3476 | D=0.6009
|
| 150 |
+
2505.4s 162 Val_loss=7.5291
|
| 151 |
+
2510.9s 163 🖼 Saved sample images to output/epoch_013.png
|
| 152 |
+
2522.8s 164 Step 0/376 | G=9.2941 | D=0.9617
|
| 153 |
+
2568.0s 165 Step 100/376 | G=6.2757 | D=0.6003
|
| 154 |
+
2613.3s 166 Step 200/376 | G=5.7474 | D=0.6420
|
| 155 |
+
2658.5s 167 Step 300/376 | G=5.2191 | D=0.5598
|
| 156 |
+
2
|
| 157 |
+
2
|
| 158 |
+
2681.4s 170 Time 170.48s | G=5.2989 | D=0.6030
|
| 159 |
+
2689.3s 171 Val_loss=7.3649
|
| 160 |
+
2692.4s 172 🖼 Saved sample images to output/epoch_014.png
|
| 161 |
+
2692.7s 173 🏆 Best checkpoint updated | val_loss=7.3649
|
| 162 |
+
2704.3s 174 Step 0/376 | G=8.6483 | D=0.8423
|
| 163 |
+
2749.5s 175 Step 100/376 | G=6.0136 | D=0.5458
|
| 164 |
+
2794.8s 176 Step 200/376 | G=6.2493 | D=0.6051
|
| 165 |
+
2840.0s 177 Step 300/376 | G=5.3029 | D=0.6275
|
| 166 |
+
2
|
| 167 |
+
2
|
| 168 |
+
2861.2s 180 Time 168.48s | G=5.2628 | D=0.6038
|
| 169 |
+
2869.1s 181 Val_loss=7.1946
|
| 170 |
+
2872.3s 182 🖼 Saved sample images to output/epoch_015.png
|
| 171 |
+
2872.6s 183 🏆 Best checkpoint updated | val_loss=7.1946
|
| 172 |
+
2872.9s 184 💾 Checkpoint saved at epoch 15
|
| 173 |
+
2886.9s 185 Step 0/376 | G=8.4540 | D=0.9136
|
| 174 |
+
2932.2s 186 Step 100/376 | G=6.3066 | D=0.5660
|
| 175 |
+
2977.5s 187 Step 200/376 | G=6.3131 | D=0.5907
|
| 176 |
+
3022.7s 188 Step 300/376 | G=5.0895 | D=0.6121
|
| 177 |
+
3
|
| 178 |
+
3
|
| 179 |
+
3044.0s 191 Time 171.06s | G=5.2323 | D=0.6049
|
| 180 |
+
3051.8s 192 Val_loss=7.1181
|
| 181 |
+
3054.8s 193 🖼 Saved sample images to output/epoch_016.png
|
| 182 |
+
3055.1s 194 🏆 Best checkpoint updated | val_loss=7.1181
|
| 183 |
+
3067.3s 195 Step 0/376 | G=8.3916 | D=1.0179
|
| 184 |
+
3112.5s 196 Step 100/376 | G=6.2327 | D=0.5590
|
| 185 |
+
3157.8s 197 Step 200/376 | G=5.5025 | D=0.6376
|
| 186 |
+
3203.1s 198 Step 300/376 | G=5.2561 | D=0.5560
|
| 187 |
+
3
|
| 188 |
+
3
|
| 189 |
+
3224.2s 201 Time 169.03s | G=5.1991 | D=0.6055
|
| 190 |
+
3232.1s 202 Val_loss=7.2863
|
| 191 |
+
3235.3s 203 🖼 Saved sample images to output/epoch_017.png
|
| 192 |
+
3249.4s 204 Step 0/376 | G=8.9895 | D=0.8920
|
| 193 |
+
3294.6s 205 Step 100/376 | G=6.2291 | D=0.5340
|
| 194 |
+
3339.9s 206 Step 200/376 | G=5.6260 | D=0.5993
|
| 195 |
+
3385.1s 207 Step 300/376 | G=5.1172 | D=0.6228
|
| 196 |
+
3
|
| 197 |
+
3
|
| 198 |
+
3406.3s 210 Time 170.99s | G=5.1345 | D=0.6058
|
| 199 |
+
3414.3s 211 Val_loss=7.0963
|
| 200 |
+
3417.3s 212 🖼 Saved sample images to output/epoch_018.png
|
| 201 |
+
3417.6s 213 🏆 Best checkpoint updated | val_loss=7.0963
|
| 202 |
+
3429.7s 214 Step 0/376 | G=8.4496 | D=0.7219
|
| 203 |
+
3475.0s 215 Step 100/376 | G=5.9285 | D=0.5680
|
| 204 |
+
3520.2s 216 Step 200/376 | G=5.6910 | D=0.6167
|
| 205 |
+
3565.5s 217 Step 300/376 | G=4.7538 | D=0.5893
|
| 206 |
+
3
|
| 207 |
+
3
|
| 208 |
+
3586.7s 220 Time 169.04s | G=5.0872 | D=0.6078
|
| 209 |
+
3594.6s 221 Val_loss=7.1790
|
| 210 |
+
3597.6s 222 🖼 Saved sample images to output/epoch_019.png
|
| 211 |
+
3611.9s 223 Step 0/376 | G=9.2708 | D=1.0899
|
| 212 |
+
3657.1s 224 Step 100/376 | G=5.5898 | D=0.5551
|
| 213 |
+
3702.4s 225 Step 200/376 | G=5.4319 | D=0.6237
|
| 214 |
+
3747.7s 226 Step 300/376 | G=5.0019 | D=0.5962
|
| 215 |
+
3
|
| 216 |
+
3
|
| 217 |
+
3768.9s 229 Time 171.20s | G=5.0589 | D=0.6095
|
| 218 |
+
3777.0s 230 Val_loss=7.0951
|
| 219 |
+
3780.0s 231 🖼 Saved sample images to output/epoch_020.png
|
| 220 |
+
3780.3s 232 🏆 Best checkpoint updated | val_loss=7.0951
|
| 221 |
+
3780.6s 233 💾 Checkpoint saved at epoch 20
|
| 222 |
+
3792.7s 234 Step 0/376 | G=8.4845 | D=0.8562
|
| 223 |
+
3837.9s 235 Step 100/376 | G=5.6454 | D=0.4984
|
| 224 |
+
3883.2s 236 Step 200/376 | G=5.3433 | D=0.6519
|
| 225 |
+
3928.5s 237 Step 300/376 | G=4.4948 | D=0.6561
|
| 226 |
+
3
|
| 227 |
+
3
|
| 228 |
+
3949.8s 240 Time 169.10s | G=5.0314 | D=0.6069
|
| 229 |
+
3957.6s 241 Val_loss=7.0698
|
| 230 |
+
3960.9s 242 🖼 Saved sample images to output/epoch_021.png
|
| 231 |
+
3961.2s 243 🏆 Best checkpoint updated | val_loss=7.0698
|
| 232 |
+
3975.7s 244 Step 0/376 | G=8.8488 | D=0.7604
|
| 233 |
+
4020.9s 245 Step 100/376 | G=5.4203 | D=0.5349
|
| 234 |
+
4066.2s 246 Step 200/376 | G=5.7204 | D=0.6369
|
| 235 |
+
4111.4s 247 Step 300/376 | G=4.9041 | D=0.5937
|
| 236 |
+
4
|
| 237 |
+
4
|
| 238 |
+
4132.8s 250 Time 171.61s | G=5.0194 | D=0.6094
|
| 239 |
+
4143.1s 251 Val_loss=7.0145
|
| 240 |
+
4146.0s 252 🖼 Saved sample images to output/epoch_022.png
|
| 241 |
+
4146.3s 253 🏆 Best checkpoint updated | val_loss=7.0145
|
| 242 |
+
4158.4s 254 Step 0/376 | G=8.4787 | D=0.8817
|
| 243 |
+
4203.6s 255 Step 100/376 | G=5.4149 | D=0.5902
|
| 244 |
+
4248.9s 256 Step 200/376 | G=5.3208 | D=0.6242
|
| 245 |
+
4294.2s 257 Step 300/376 | G=4.6400 | D=0.6054
|
| 246 |
+
4
|
| 247 |
+
4
|
| 248 |
+
4315.3s 260 Time 168.93s | G=4.9605 | D=0.6119
|
| 249 |
+
4323.1s 261 Val_loss=6.8700
|
| 250 |
+
4326.3s 262 🖼 Saved sample images to output/epoch_023.png
|
| 251 |
+
4326.6s 263 🏆 Best checkpoint updated | val_loss=6.8700
|
| 252 |
+
4338.4s 264 Step 0/376 | G=7.5732 | D=0.6659
|
| 253 |
+
4383.7s 265 Step 100/376 | G=5.9233 | D=0.4832
|
| 254 |
+
4428.9s 266 Step 200/376 | G=5.2821 | D=0.6215
|
| 255 |
+
4474.2s 267 Step 300/376 | G=5.0356 | D=0.6299
|
| 256 |
+
4
|
| 257 |
+
4
|
| 258 |
+
4498.3s 270 Time 171.72s | G=4.9180 | D=0.6126
|
| 259 |
+
4506.1s 271 Val_loss=6.9174
|
| 260 |
+
4509.1s 272 🖼 Saved sample images to output/epoch_024.png
|
| 261 |
+
4521.0s 273 Step 0/376 | G=7.4529 | D=0.8022
|
| 262 |
+
4566.2s 274 Step 100/376 | G=5.4565 | D=0.5570
|
| 263 |
+
4611.4s 275 Step 200/376 | G=4.8301 | D=0.7032
|
| 264 |
+
4656.7s 276 Step 300/376 | G=4.8302 | D=0.6007
|
| 265 |
+
4
|
| 266 |
+
4
|
| 267 |
+
4677.9s 279 Time 168.80s | G=4.8706 | D=0.6118
|
| 268 |
+
4685.9s 280 Val_loss=6.7568
|
| 269 |
+
4688.9s 281 🖼 Saved sample images to output/epoch_025.png
|
| 270 |
+
4689.2s 282 🏆 Best checkpoint updated | val_loss=6.7568
|
| 271 |
+
4689.5s 283 💾 Checkpoint saved at epoch 25
|
| 272 |
+
4701.6s 284 Step 0/376 | G=8.1572 | D=0.9106
|
| 273 |
+
4746.9s 285 Step 100/376 | G=5.4285 | D=0.5716
|
| 274 |
+
4792.2s 286 Step 200/376 | G=5.1490 | D=0.6190
|
| 275 |
+
4837.4s 287 Step 300/376 | G=4.6954 | D=0.6809
|
| 276 |
+
4
|
| 277 |
+
4
|
| 278 |
+
4858.6s 290 Time 169.05s | G=4.8471 | D=0.6125
|
| 279 |
+
4866.4s 291 Val_loss=7.1181
|
| 280 |
+
4869.4s 292 🖼 Saved sample images to output/epoch_026.png
|
| 281 |
+
4881.1s 293 Step 0/376 | G=7.8186 | D=0.7620
|
| 282 |
+
4926.4s 294 Step 100/376 | G=5.3644 | D=0.5120
|
| 283 |
+
4971.6s 295 Step 200/376 | G=5.7542 | D=0.6179
|
| 284 |
+
5016.9s 296 Step 300/376 | G=4.6515 | D=0.6274
|
| 285 |
+
5
|
| 286 |
+
5
|
| 287 |
+
5041.3s 299 Time 171.87s | G=4.8267 | D=0.6131
|
| 288 |
+
5049.2s 300 Val_loss=6.8917
|
| 289 |
+
5052.2s 301 🖼 Saved sample images to output/epoch_027.png
|
| 290 |
+
5064.2s 302 Step 0/376 | G=8.3894 | D=0.8106
|
| 291 |
+
5109.5s 303 Step 100/376 | G=6.2067 | D=0.6047
|
| 292 |
+
5154.8s 304 Step 200/376 | G=4.9070 | D=0.6469
|
| 293 |
+
5200.1s 305 Step 300/376 | G=4.5984 | D=0.6116
|
| 294 |
+
5
|
| 295 |
+
5
|
| 296 |
+
5221.3s 308 Time 168.97s | G=4.7842 | D=0.6137
|
| 297 |
+
5229.0s 309 Val_loss=6.8348
|
| 298 |
+
5234.4s 310 🖼 Saved sample images to output/epoch_028.png
|
| 299 |
+
5246.2s 311 Step 0/376 | G=7.6272 | D=0.8283
|
| 300 |
+
5291.5s 312 Step 100/376 | G=5.3753 | D=0.5221
|
| 301 |
+
5336.8s 313 Step 200/376 | G=4.9872 | D=0.6496
|
| 302 |
+
5382.1s 314 Step 300/376 | G=4.4991 | D=0.6430
|
| 303 |
+
5
|
| 304 |
+
5
|
| 305 |
+
5403.4s 317 Time 168.91s | G=4.7228 | D=0.6133
|
| 306 |
+
5411.2s 318 Val_loss=6.9368
|
| 307 |
+
5414.3s 319 🖼 Saved sample images to output/epoch_029.png
|
| 308 |
+
5426.3s 320 Step 0/376 | G=7.4167 | D=0.6308
|
| 309 |
+
5471.6s 321 Step 100/376 | G=5.3999 | D=0.5426
|
| 310 |
+
5516.9s 322 Step 200/376 | G=4.8630 | D=0.5926
|
| 311 |
+
5562.1s 323 Step 300/376 | G=4.7185 | D=0.6238
|
| 312 |
+
5
|
| 313 |
+
5
|
| 314 |
+
5587.0s 326 Time 172.68s | G=4.7189 | D=0.6138
|
| 315 |
+
5598.4s 327 Val_loss=6.5834
|
| 316 |
+
5602.3s 328 🖼 Saved sample images to output/epoch_030.png
|
| 317 |
+
5602.6s 329 🏆 Best checkpoint updated | val_loss=6.5834
|
| 318 |
+
5603.0s 330 💾 Checkpoint saved at epoch 30
|
| 319 |
+
5616.8s 331 Step 0/376 | G=8.3277 | D=0.5476
|
| 320 |
+
5662.1s 332 Step 100/376 | G=5.4074 | D=0.6476
|
| 321 |
+
5707.4s 333 Step 200/376 | G=4.6740 | D=0.6172
|
| 322 |
+
5752.6s 334 Step 300/376 | G=4.4735 | D=0.6534
|
| 323 |
+
5
|
| 324 |
+
5
|
| 325 |
+
5773.8s 337 Time 170.83s | G=4.6650 | D=0.6149
|
| 326 |
+
5781.5s 338 Val_loss=6.5301
|
| 327 |
+
5787.0s 339 🖼 Saved sample images to output/epoch_031.png
|
| 328 |
+
5787.3s 340 🏆 Best checkpoint updated | val_loss=6.5301
|
| 329 |
+
5799.3s 341 Step 0/376 | G=7.5849 | D=0.8446
|
| 330 |
+
5844.5s 342 Step 100/376 | G=5.6047 | D=0.5846
|
| 331 |
+
5889.8s 343 Step 200/376 | G=4.8021 | D=0.6334
|
| 332 |
+
5935.1s 344 Step 300/376 | G=4.3887 | D=0.5969
|
| 333 |
+
5
|
| 334 |
+
5
|
| 335 |
+
5956.4s 347 Time 169.06s | G=4.6389 | D=0.6163
|
| 336 |
+
5964.4s 348 Val_loss=6.4039
|
| 337 |
+
5967.4s 349 🖼 Saved sample images to output/epoch_032.png
|
| 338 |
+
5967.7s 350 🏆 Best checkpoint updated | val_loss=6.4039
|
| 339 |
+
5979.7s 351 Step 0/376 | G=7.6932 | D=0.7573
|
| 340 |
+
6025.0s 352 Step 100/376 | G=5.4156 | D=0.5347
|
| 341 |
+
6070.3s 353 Step 200/376 | G=4.9140 | D=0.6005
|
| 342 |
+
6115.6s 354 Step 300/376 | G=4.5657 | D=0.6101
|
| 343 |
+
6
|
| 344 |
+
6
|
| 345 |
+
6141.0s 357 Time 173.25s | G=4.6034 | D=0.6154
|
| 346 |
+
6148.8s 358 Val_loss=6.4423
|
| 347 |
+
6154.2s 359 🖼 Saved sample images to output/epoch_033.png
|
| 348 |
+
6166.2s 360 Step 0/376 | G=7.7424 | D=0.6651
|
| 349 |
+
6211.6s 361 Step 100/376 | G=5.2940 | D=0.6088
|
| 350 |
+
6256.8s 362 Step 200/376 | G=4.7449 | D=0.6406
|
| 351 |
+
6302.1s 363 Step 300/376 | G=4.1235 | D=0.6599
|
| 352 |
+
6
|
| 353 |
+
6
|
| 354 |
+
6323.5s 366 Time 169.19s | G=4.5536 | D=0.6159
|
| 355 |
+
6331.3s 367 Val_loss=6.5015
|
| 356 |
+
6334.4s 368 🖼 Saved sample images to output/epoch_034.png
|
| 357 |
+
6346.5s 369 Step 0/376 | G=7.2271 | D=0.8131
|
| 358 |
+
6391.8s 370 Step 100/376 | G=5.8559 | D=0.5748
|
| 359 |
+
6437.1s 371 Step 200/376 | G=5.1040 | D=0.6515
|
| 360 |
+
6482.4s 372 Step 300/376 | G=4.3491 | D=0.5957
|
| 361 |
+
6
|
| 362 |
+
6
|
| 363 |
+
6503.7s 375 Time 169.24s | G=4.5184 | D=0.6151
|
| 364 |
+
6511.4s 376 Val_loss=6.4034
|
| 365 |
+
6514.5s 377 🖼 Saved sample images to output/epoch_035.png
|
| 366 |
+
6514.8s 378 🏆 Best checkpoint updated | val_loss=6.4034
|
| 367 |
+
6515.1s 379 💾 Checkpoint saved at epoch 35
|
| 368 |
+
6527.1s 380 Step 0/376 | G=7.3549 | D=0.7792
|
| 369 |
+
6572.4s 381 Step 100/376 | G=5.3535 | D=0.6090
|
| 370 |
+
6617.7s 382 Step 200/376 | G=4.7425 | D=0.6340
|
| 371 |
+
6663.0s 383 Step 300/376 | G=4.8284 | D=0.6444
|
| 372 |
+
6
|
| 373 |
+
6
|
| 374 |
+
6684.1s 386 Time 169.00s | G=4.5015 | D=0.6168
|
| 375 |
+
6692.4s 387 Val_loss=6.3655
|
| 376 |
+
6695.5s 388 🖼 Saved sample images to output/epoch_036.png
|
| 377 |
+
6695.8s 389 🏆 Best checkpoint updated | val_loss=6.3655
|
| 378 |
+
6712.8s 390 Step 0/376 | G=7.3334 | D=0.7174
|
| 379 |
+
6758.1s 391 Step 100/376 | G=4.5692 | D=0.5397
|
| 380 |
+
6803.4s 392 Step 200/376 | G=4.0998 | D=0.6367
|
| 381 |
+
6848.7s 393 Step 300/376 | G=4.3749 | D=0.6307
|
| 382 |
+
6
|
| 383 |
+
6
|
| 384 |
+
6869.9s 396 Time 174.06s | G=4.4665 | D=0.6189
|
| 385 |
+
6877.7s 397 Val_loss=6.3378
|
| 386 |
+
6880.9s 398 🖼 Saved sample images to output/epoch_037.png
|
| 387 |
+
6881.2s 399 🏆 Best checkpoint updated | val_loss=6.3378
|
| 388 |
+
6893.3s 400 Step 0/376 | G=7.1830 | D=0.6298
|
| 389 |
+
6938.6s 401 Step 100/376 | G=4.8157 | D=0.5073
|
| 390 |
+
6983.9s 402 Step 200/376 | G=5.0199 | D=0.6477
|
| 391 |
+
7029.2s 403 Step 300/376 | G=4.1610 | D=0.5946
|
| 392 |
+
7
|
| 393 |
+
7
|
| 394 |
+
7050.6s 406 Time 169.40s | G=4.4084 | D=0.6181
|
| 395 |
+
7058.5s 407 Val_loss=6.3234
|
| 396 |
+
7061.6s 408 🖼 Saved sample images to output/epoch_038.png
|
| 397 |
+
7061.9s 409 🏆 Best checkpoint updated | val_loss=6.3234
|
| 398 |
+
7074.0s 410 Step 0/376 | G=7.6214 | D=0.7791
|
| 399 |
+
7119.3s 411 Step 100/376 | G=5.3714 | D=0.5909
|
| 400 |
+
7164.6s 412 Step 200/376 | G=4.5973 | D=0.6268
|
| 401 |
+
7209.9s 413 Step 300/376 | G=4.3019 | D=0.6437
|
| 402 |
+
7
|
| 403 |
+
7
|
| 404 |
+
7231.1s 416 Time 169.22s | G=4.3977 | D=0.6163
|
| 405 |
+
7239.1s 417 Val_loss=6.2702
|
| 406 |
+
7242.2s 418 🖼 Saved sample images to output/epoch_039.png
|
| 407 |
+
7242.5s 419 🏆 Best checkpoint updated | val_loss=6.2702
|
| 408 |
+
7254.4s 420 Step 0/376 | G=7.7957 | D=0.8412
|
| 409 |
+
7299.8s 421 Step 100/376 | G=4.8231 | D=0.5613
|
| 410 |
+
7345.0s 422 Step 200/376 | G=5.2463 | D=0.6042
|
| 411 |
+
7390.3s 423 Step 300/376 | G=4.1722 | D=0.6671
|
| 412 |
+
7
|
| 413 |
+
7
|
| 414 |
+
7411.5s 426 Time 168.99s | G=4.3469 | D=0.6208
|
| 415 |
+
7419.6s 427 Val_loss=6.2376
|
| 416 |
+
7422.8s 428 🖼 Saved sample images to output/epoch_040.png
|
| 417 |
+
7423.1s 429 🏆 Best checkpoint updated | val_loss=6.2376
|
| 418 |
+
7423.4s 430 💾 Checkpoint saved at epoch 40
|
| 419 |
+
7440.6s 431 Step 0/376 | G=7.9816 | D=0.7683
|
| 420 |
+
7485.9s 432 Step 100/376 | G=5.5838 | D=0.5975
|
| 421 |
+
7531.2s 433 Step 200/376 | G=5.0480 | D=0.6322
|
| 422 |
+
7576.5s 434 Step 300/376 | G=4.3194 | D=0.5960
|
| 423 |
+
7
|
| 424 |
+
7
|
| 425 |
+
7597.8s 437 Time 174.43s | G=4.3204 | D=0.6197
|
| 426 |
+
7605.9s 438 Val_loss=6.2099
|
| 427 |
+
7608.9s 439 🖼 Saved sample images to output/epoch_041.png
|
| 428 |
+
7609.2s 440 🏆 Best checkpoint updated | val_loss=6.2099
|
| 429 |
+
7621.3s 441 Step 0/376 | G=8.0320 | D=0.8083
|
| 430 |
+
7666.6s 442 Step 100/376 | G=4.8852 | D=0.5922
|
| 431 |
+
7711.9s 443 Step 200/376 | G=5.0478 | D=0.6280
|
| 432 |
+
7757.2s 444 Step 300/376 | G=4.0726 | D=0.6006
|
| 433 |
+
7
|
| 434 |
+
7
|
| 435 |
+
7778.6s 447 Time 169.32s | G=4.2921 | D=0.6179
|
| 436 |
+
7786.6s 448 Val_loss=6.1295
|
| 437 |
+
7789.7s 449 🖼 Saved sample images to output/epoch_042.png
|
| 438 |
+
7790.0s 450 🏆 Best checkpoint updated | val_loss=6.1295
|
| 439 |
+
7802.0s 451 Step 0/376 | G=7.7331 | D=0.7679
|
| 440 |
+
7847.4s 452 Step 100/376 | G=4.7346 | D=0.5389
|
| 441 |
+
7892.6s 453 Step 200/376 | G=4.4696 | D=0.6263
|
| 442 |
+
7937.9s 454 Step 300/376 | G=3.9252 | D=0.5932
|
| 443 |
+
7
|
| 444 |
+
7
|
| 445 |
+
7959.2s 457 Time 169.14s | G=4.2269 | D=0.6210
|
| 446 |
+
7967.1s 458 Val_loss=5.9122
|
| 447 |
+
7970.2s 459 🖼 Saved sample images to output/epoch_043.png
|
| 448 |
+
7970.5s 460 🏆 Best checkpoint updated | val_loss=5.9122
|
| 449 |
+
7982.6s 461 Step 0/376 | G=7.9052 | D=0.8564
|
| 450 |
+
8028.0s 462 Step 100/376 | G=5.1935 | D=0.5575
|
| 451 |
+
8073.2s 463 Step 200/376 | G=4.4812 | D=0.6561
|
| 452 |
+
8118.6s 464 Step 300/376 | G=4.0348 | D=0.6358
|
| 453 |
+
8
|
| 454 |
+
8
|
| 455 |
+
8139.9s 467 Time 169.36s | G=4.1986 | D=0.6204
|
| 456 |
+
8147.8s 468 Val_loss=5.9393
|
| 457 |
+
8150.9s 469 🖼 Saved sample images to output/epoch_044.png
|
| 458 |
+
8163.0s 470 Step 0/376 | G=6.7050 | D=0.7443
|
| 459 |
+
8208.3s 471 Step 100/376 | G=4.6833 | D=0.6071
|
| 460 |
+
8253.6s 472 Step 200/376 | G=4.2582 | D=0.6225
|
| 461 |
+
8298.9s 473 Step 300/376 | G=4.2085 | D=0.5813
|
| 462 |
+
8
|
| 463 |
+
8
|
| 464 |
+
8325.9s 476 Time 174.92s | G=4.1790 | D=0.6226
|
| 465 |
+
8333.7s 477 Val_loss=6.0035
|
| 466 |
+
8336.8s 478 🖼 Saved sample images to output/epoch_045.png
|
| 467 |
+
8337.1s 479 💾 Checkpoint saved at epoch 45
|
| 468 |
+
8349.0s 480 Step 0/376 | G=7.1352 | D=0.5797
|
| 469 |
+
8394.4s 481 Step 100/376 | G=4.8119 | D=0.6121
|
| 470 |
+
8439.6s 482 Step 200/376 | G=4.1505 | D=0.6122
|
| 471 |
+
8484.9s 483 Step 300/376 | G=4.3496 | D=0.6447
|
| 472 |
+
8
|
| 473 |
+
8
|
| 474 |
+
8506.3s 486 Time 169.09s | G=4.1459 | D=0.6218
|
| 475 |
+
8514.1s 487 Val_loss=5.9690
|
| 476 |
+
8517.3s 488 🖼 Saved sample images to output/epoch_046.png
|
| 477 |
+
8529.5s 489 Step 0/376 | G=7.1425 | D=0.8774
|
| 478 |
+
8574.8s 490 Step 100/376 | G=5.0781 | D=0.6307
|
| 479 |
+
8620.1s 491 Step 200/376 | G=4.3326 | D=0.6371
|
| 480 |
+
8665.4s 492 Step 300/376 | G=4.1976 | D=0.6224
|
| 481 |
+
8
|
| 482 |
+
8
|
| 483 |
+
8686.6s 495 Time 169.31s | G=4.0964 | D=0.6209
|
| 484 |
+
8696.9s 496 Val_loss=5.9383
|
| 485 |
+
8699.9s 497 🖼 Saved sample images to output/epoch_047.png
|
| 486 |
+
8711.8s 498 Step 0/376 | G=7.2791 | D=0.6243
|
| 487 |
+
8757.2s 499 Step 100/376 | G=5.2249 | D=0.5633
|
| 488 |
+
8802.4s 500 Step 200/376 | G=4.2565 | D=0.6243
|
| 489 |
+
8847.7s 501 Step 300/376 | G=3.9169 | D=0.6548
|
| 490 |
+
8
|
| 491 |
+
8
|
| 492 |
+
8869.0s 504 Time 169.04s | G=4.0535 | D=0.6216
|
| 493 |
+
8877.0s 505 Val_loss=5.9086
|
| 494 |
+
8880.0s 506 🖼 Saved sample images to output/epoch_048.png
|
| 495 |
+
8880.3s 507 🏆 Best checkpoint updated | val_loss=5.9086
|
| 496 |
+
8892.4s 508 Step 0/376 | G=6.3896 | D=0.6278
|
| 497 |
+
8937.8s 509 Step 100/376 | G=4.6246 | D=0.5498
|
| 498 |
+
8983.1s 510 Step 200/376 | G=4.0058 | D=0.6666
|
| 499 |
+
9028.4s 511 Step 300/376 | G=4.0673 | D=0.6080
|
| 500 |
+
9
|
| 501 |
+
9
|
| 502 |
+
9049.6s 514 Time 169.30s | G=4.0225 | D=0.6231
|
| 503 |
+
9057.5s 515 Val_loss=5.7599
|
| 504 |
+
9063.0s 516 🖼 Saved sample images to output/epoch_049.png
|
| 505 |
+
9063.3s 517 🏆 Best checkpoint updated | val_loss=5.7599
|
| 506 |
+
9081.6s 518 Step 0/376 | G=7.1973 | D=0.8021
|
| 507 |
+
9127.0s 519 Step 100/376 | G=4.7325 | D=0.6218
|
| 508 |
+
9172.2s 520 Step 200/376 | G=4.7112 | D=0.6080
|
| 509 |
+
9217.5s 521 Step 300/376 | G=3.7986 | D=0.6098
|
| 510 |
+
9
|
| 511 |
+
9
|
| 512 |
+
9238.8s 524 Time 175.41s | G=3.9794 | D=0.6229
|
| 513 |
+
9246.8s 525 Val_loss=5.6452
|
| 514 |
+
9249.9s 526 🖼 Saved sample images to output/epoch_050.png
|
| 515 |
+
9250.2s 527 🏆 Best checkpoint updated | val_loss=5.6452
|
| 516 |
+
9250.5s 528 💾 Checkpoint saved at epoch 50
|
| 517 |
+
9262.5s 529 Step 0/376 | G=7.3798 | D=0.6634
|
| 518 |
+
9307.8s 530 Step 100/376 | G=4.4809 | D=0.5703
|
| 519 |
+
9353.0s 531 Step 200/376 | G=4.3223 | D=0.6227
|
| 520 |
+
9398.3s 532 Step 300/376 | G=3.7706 | D=0.6429
|
| 521 |
+
9
|
| 522 |
+
9
|
| 523 |
+
9419.6s 535 Time 168.97s | G=3.9478 | D=0.6256
|
| 524 |
+
9427.7s 536 Val_loss=5.6258
|
| 525 |
+
9430.9s 537 🖼 Saved sample images to output/epoch_051.png
|
| 526 |
+
9431.2s 538 🏆 Best checkpoint updated | val_loss=5.6258
|
| 527 |
+
9443.4s 539 Step 0/376 | G=6.4754 | D=0.7115
|
| 528 |
+
9488.7s 540 Step 100/376 | G=4.9335 | D=0.6201
|
| 529 |
+
9534.0s 541 Step 200/376 | G=4.2455 | D=0.6402
|
| 530 |
+
9579.2s 542 Step 300/376 | G=3.9834 | D=0.5999
|
| 531 |
+
9
|
| 532 |
+
9
|
| 533 |
+
9600.5s 545 Time 169.29s | G=3.9202 | D=0.6241
|
| 534 |
+
9608.7s 546 Val_loss=5.8241
|
| 535 |
+
9612.0s 547 🖼 Saved sample images to output/epoch_052.png
|
| 536 |
+
9624.1s 548 Step 0/376 | G=5.7289 | D=0.6756
|
| 537 |
+
9669.4s 549 Step 100/376 | G=4.4836 | D=0.5917
|
| 538 |
+
9714.6s 550 Step 200/376 | G=4.0337 | D=0.6521
|
| 539 |
+
9759.9s 551 Step 300/376 | G=3.6739 | D=0.6380
|
| 540 |
+
9
|
| 541 |
+
9
|
| 542 |
+
9781.3s 554 Time 169.29s | G=3.8781 | D=0.6227
|
| 543 |
+
9789.1s 555 Val_loss=5.6002
|
| 544 |
+
9794.6s 556 🖼 Saved sample images to output/epoch_053.png
|
| 545 |
+
9794.9s 557 🏆 Best checkpoint updated | val_loss=5.6002
|
| 546 |
+
9807.0s 558 Step 0/376 | G=7.2531 | D=0.6886
|
| 547 |
+
9852.4s 559 Step 100/376 | G=4.5507 | D=0.5559
|
| 548 |
+
9897.6s 560 Step 200/376 | G=4.0481 | D=0.6331
|
| 549 |
+
9942.9s 561 Step 300/376 | G=3.7436 | D=0.6088
|
| 550 |
+
9
|
| 551 |
+
9
|
| 552 |
+
9964.2s 564 Time 169.28s | G=3.8469 | D=0.6240
|
| 553 |
+
9972.1s 565 Val_loss=5.4908
|
| 554 |
+
9975.3s 566 🖼 Saved sample images to output/epoch_054.png
|
| 555 |
+
9975.6s 567 🏆 Best checkpoint updated | val_loss=5.4908
|
| 556 |
+
9987.4s 568 Step 0/376 | G=7.0989 | D=0.6965
|
| 557 |
+
10032.8s 569 Step 100/376 | G=4.2875 | D=0.5799
|
| 558 |
+
10078.0s 570 Step 200/376 | G=4.0449 | D=0.6357
|
| 559 |
+
10123.3s 571 Step 300/376 | G=3.6967 | D=0.6392
|
| 560 |
+
10
|
| 561 |
+
10
|
| 562 |
+
10151.4s 574 Time 175.80s | G=3.7968 | D=0.6261
|
| 563 |
+
10159.4s 575 Val_loss=5.4853
|
| 564 |
+
10162.5s 576 🖼 Saved sample images to output/epoch_055.png
|
| 565 |
+
10162.8s 577 🏆 Best checkpoint updated | val_loss=5.4853
|
| 566 |
+
10163.1s 578 💾 Checkpoint saved at epoch 55
|
| 567 |
+
10175.1s 579 Step 0/376 | G=6.5453 | D=0.6883
|
| 568 |
+
10220.4s 580 Step 100/376 | G=4.8273 | D=0.6235
|
| 569 |
+
10265.6s 581 Step 200/376 | G=4.6326 | D=0.6328
|
| 570 |
+
10310.9s 582 Step 300/376 | G=3.5085 | D=0.6500
|
| 571 |
+
10
|
| 572 |
+
10
|
| 573 |
+
10332.0s 585 Time 168.89s | G=3.7650 | D=0.6280
|
| 574 |
+
10339.9s 586 Val_loss=5.6348
|
| 575 |
+
10345.4s 587 🖼 Saved sample images to output/epoch_056.png
|
| 576 |
+
10357.5s 588 Step 0/376 | G=6.1980 | D=0.9013
|
| 577 |
+
10402.8s 589 Step 100/376 | G=4.5555 | D=0.6144
|
| 578 |
+
10448.1s 590 Step 200/376 | G=4.1018 | D=0.6405
|
| 579 |
+
10493.3s 591 Step 300/376 | G=3.5860 | D=0.6230
|
| 580 |
+
10
|
| 581 |
+
10
|
| 582 |
+
10514.5s 594 Time 169.16s | G=3.7293 | D=0.6259
|
| 583 |
+
10524.8s 595 Val_loss=5.4346
|
| 584 |
+
10527.9s 596 🖼 Saved sample images to output/epoch_057.png
|
| 585 |
+
10528.2s 597 🏆 Best checkpoint updated | val_loss=5.4346
|
| 586 |
+
10540.2s 598 Step 0/376 | G=6.5101 | D=0.5780
|
| 587 |
+
10585.6s 599 Step 100/376 | G=4.2086 | D=0.5738
|
| 588 |
+
10630.8s 600 Step 200/376 | G=4.3800 | D=0.6470
|
| 589 |
+
10676.1s 601 Step 300/376 | G=3.6316 | D=0.6667
|
| 590 |
+
10
|
| 591 |
+
10
|
| 592 |
+
10697.4s 604 Time 169.11s | G=3.7031 | D=0.6267
|
| 593 |
+
10705.3s 605 Val_loss=5.2923
|
| 594 |
+
10710.8s 606 🖼 Saved sample images to output/epoch_058.png
|
| 595 |
+
10711.1s 607 🏆 Best checkpoint updated | val_loss=5.2923
|
| 596 |
+
10723.1s 608 Step 0/376 | G=6.2087 | D=0.6703
|
| 597 |
+
10768.5s 609 Step 100/376 | G=4.5461 | D=0.6209
|
| 598 |
+
10813.8s 610 Step 200/376 | G=3.6366 | D=0.6273
|
| 599 |
+
10859.2s 611 Step 300/376 | G=3.6145 | D=0.6185
|
| 600 |
+
10
|
| 601 |
+
10
|
| 602 |
+
10880.5s 614 Time 169.39s | G=3.6572 | D=0.6265
|
| 603 |
+
10888.5s 615 Val_loss=5.2706
|
| 604 |
+
10891.8s 616 🖼 Saved sample images to output/epoch_059.png
|
| 605 |
+
10892.1s 617 🏆 Best checkpoint updated | val_loss=5.2706
|
| 606 |
+
10904.3s 618 Step 0/376 | G=5.6787 | D=0.6679
|
| 607 |
+
10949.8s 619 Step 100/376 | G=4.4435 | D=0.6094
|
| 608 |
+
10995.1s 620 Step 200/376 | G=3.8235 | D=0.6758
|
| 609 |
+
11040.4s 621 Step 300/376 | G=3.6584 | D=0.6582
|
| 610 |
+
11
|
| 611 |
+
11
|
| 612 |
+
11061.8s 624 Time 169.62s | G=3.6291 | D=0.6276
|
| 613 |
+
11069.8s 625 Val_loss=5.4209
|
| 614 |
+
11073.1s 626 🖼 Saved sample images to output/epoch_060.png
|
| 615 |
+
11073.4s 627 💾 Checkpoint saved at epoch 60
|
| 616 |
+
11093.5s 628 Step 0/376 | G=5.5204 | D=0.5549
|
| 617 |
+
11138.9s 629 Step 100/376 | G=4.4152 | D=0.6049
|
| 618 |
+
11184.1s 630 Step 200/376 | G=4.2356 | D=0.6240
|
| 619 |
+
11229.4s 631 Step 300/376 | G=3.1710 | D=0.6618
|
| 620 |
+
11
|
| 621 |
+
11
|
| 622 |
+
11250.8s 634 Time 177.28s | G=3.6050 | D=0.6300
|
| 623 |
+
11261.0s 635 Val_loss=5.2053
|
| 624 |
+
11264.1s 636 🖼 Saved sample images to output/epoch_061.png
|
| 625 |
+
11264.5s 637 🏆 Best checkpoint updated | val_loss=5.2053
|
| 626 |
+
11276.7s 638 Step 0/376 | G=7.0660 | D=0.8382
|
| 627 |
+
11322.1s 639 Step 100/376 | G=4.7023 | D=0.5939
|
| 628 |
+
11367.4s 640 Step 200/376 | G=3.4557 | D=0.6008
|
| 629 |
+
11412.7s 641 Step 300/376 | G=3.1275 | D=0.6347
|
| 630 |
+
11
|
| 631 |
+
11
|
| 632 |
+
11434.1s 644 Time 169.61s | G=3.5584 | D=0.6283
|
| 633 |
+
11442.2s 645 Val_loss=5.2976
|
| 634 |
+
11447.7s 646 🖼 Saved sample images to output/epoch_062.png
|
| 635 |
+
11459.9s 647 Step 0/376 | G=6.1519 | D=0.6746
|
| 636 |
+
11505.3s 648 Step 100/376 | G=4.0729 | D=0.6114
|
| 637 |
+
11550.6s 649 Step 200/376 | G=3.5431 | D=0.6546
|
| 638 |
+
11595.9s 650 Step 300/376 | G=3.3409 | D=0.6478
|
| 639 |
+
11
|
| 640 |
+
11
|
| 641 |
+
11649.6s 653 Time 201.92s | G=3.5359 | D=0.6299
|
| 642 |
+
11657.5s 654 Val_loss=5.2755
|
| 643 |
+
11660.5s 655 🖼 Saved sample images to output/epoch_063.png
|
| 644 |
+
11672.4s 656 Step 0/376 | G=5.7210 | D=0.7923
|
| 645 |
+
11717.8s 657 Step 100/376 | G=4.3220 | D=0.6124
|
| 646 |
+
11763.1s 658 Step 200/376 | G=3.8023 | D=0.6492
|
| 647 |
+
11808.4s 659 Step 300/376 | G=3.4106 | D=0.6445
|
| 648 |
+
11
|
| 649 |
+
11
|
| 650 |
+
11829.6s 662 Time 169.07s | G=3.4787 | D=0.6300
|
| 651 |
+
11837.6s 663 Val_loss=5.1321
|
| 652 |
+
11840.6s 664 🖼 Saved sample images to output/epoch_064.png
|
| 653 |
+
11840.9s 665 🏆 Best checkpoint updated | val_loss=5.1321
|
| 654 |
+
11852.7s 666 Step 0/376 | G=5.2394 | D=0.7294
|
| 655 |
+
11898.1s 667 Step 100/376 | G=4.1536 | D=0.5974
|
| 656 |
+
11943.5s 668 Step 200/376 | G=3.9781 | D=0.6169
|
| 657 |
+
11988.7s 669 Step 300/376 | G=3.9450 | D=0.5819
|
| 658 |
+
12
|
| 659 |
+
12
|
| 660 |
+
12010.0s 672 Time 169.00s | G=3.4519 | D=0.6294
|
| 661 |
+
12017.9s 673 Val_loss=4.9427
|
| 662 |
+
12023.4s 674 🖼 Saved sample images to output/epoch_065.png
|
| 663 |
+
12023.7s 675 🏆 Best checkpoint updated | val_loss=4.9427
|
| 664 |
+
12024.0s 676 💾 Checkpoint saved at epoch 65
|
| 665 |
+
12035.8s 677 Step 0/376 | G=5.8535 | D=0.7737
|
| 666 |
+
12081.2s 678 Step 100/376 | G=3.9873 | D=0.5937
|
| 667 |
+
12126.5s 679 Step 200/376 | G=3.3124 | D=0.6624
|
| 668 |
+
12171.8s 680 Step 300/376 | G=3.2737 | D=0.6563
|
| 669 |
+
12
|
| 670 |
+
12
|
| 671 |
+
12193.4s 683 Time 169.36s | G=3.4109 | D=0.6314
|
| 672 |
+
12201.4s 684 Val_loss=5.0014
|
| 673 |
+
12204.6s 685 🖼 Saved sample images to output/epoch_066.png
|
| 674 |
+
12216.8s 686 Step 0/376 | G=6.4397 | D=0.7202
|
| 675 |
+
12262.2s 687 Step 100/376 | G=3.9876 | D=0.5936
|
| 676 |
+
12307.5s 688 Step 200/376 | G=4.3265 | D=0.6032
|
| 677 |
+
12352.9s 689 Step 300/376 | G=3.2042 | D=0.6529
|
| 678 |
+
12
|
| 679 |
+
12
|
| 680 |
+
12384.2s 692 Time 179.63s | G=3.3774 | D=0.6329
|
| 681 |
+
12392.2s 693 Val_loss=4.9945
|
| 682 |
+
12395.2s 694 🖼 Saved sample images to output/epoch_067.png
|
| 683 |
+
12407.7s 695 Step 0/376 | G=5.8329 | D=0.7105
|
| 684 |
+
12453.1s 696 Step 100/376 | G=3.6485 | D=0.6176
|
| 685 |
+
12498.5s 697 Step 200/376 | G=3.7839 | D=0.6328
|
| 686 |
+
12543.8s 698 Step 300/376 | G=3.4857 | D=0.6119
|
| 687 |
+
12
|
| 688 |
+
12
|
| 689 |
+
12565.1s 701 Time 169.76s | G=3.3480 | D=0.6318
|
| 690 |
+
12573.0s 702 Val_loss=4.9362
|
| 691 |
+
12576.0s 703 🖼 Saved sample images to output/epoch_068.png
|
| 692 |
+
12576.3s 704 🏆 Best checkpoint updated | val_loss=4.9362
|
| 693 |
+
12588.5s 705 Step 0/376 | G=5.4719 | D=0.7768
|
| 694 |
+
12633.9s 706 Step 100/376 | G=3.8334 | D=0.6669
|
| 695 |
+
12679.2s 707 Step 200/376 | G=3.6392 | D=0.6257
|
| 696 |
+
12724.5s 708 Step 300/376 | G=3.1372 | D=0.6679
|
| 697 |
+
12
|
| 698 |
+
12
|
| 699 |
+
12745.8s 711 Time 169.43s | G=3.3092 | D=0.6321
|
| 700 |
+
12753.7s 712 Val_loss=4.8826
|
| 701 |
+
12756.7s 713 🖼 Saved sample images to output/epoch_069.png
|
| 702 |
+
12757.0s 714 🏆 Best checkpoint updated | val_loss=4.8826
|
| 703 |
+
12769.0s 715 Step 0/376 | G=4.9498 | D=0.6127
|
| 704 |
+
12814.4s 716 Step 100/376 | G=3.6878 | D=0.6158
|
| 705 |
+
12859.7s 717 Step 200/376 | G=3.3736 | D=0.6621
|
| 706 |
+
12905.0s 718 Step 300/376 | G=3.0053 | D=0.6262
|
| 707 |
+
12
|
| 708 |
+
12
|
| 709 |
+
12926.4s 721 Time 169.29s | G=3.2584 | D=0.6321
|
| 710 |
+
12934.4s 722 Val_loss=4.9833
|
| 711 |
+
12937.4s 723 🖼 Saved sample images to output/epoch_070.png
|
| 712 |
+
12937.7s 724 💾 Checkpoint saved at epoch 70
|
| 713 |
+
12949.7s 725 Step 0/376 | G=5.6698 | D=0.6535
|
| 714 |
+
12995.1s 726 Step 100/376 | G=3.8697 | D=0.6405
|
| 715 |
+
13040.5s 727 Step 200/376 | G=3.9499 | D=0.6113
|
| 716 |
+
13085.7s 728 Step 300/376 | G=3.0893 | D=0.6718
|
| 717 |
+
13
|
| 718 |
+
13
|
| 719 |
+
13107.0s 731 Time 169.23s | G=3.2324 | D=0.6317
|
| 720 |
+
13114.9s 732 Val_loss=4.7447
|
| 721 |
+
13120.4s 733 🖼 Saved sample images to output/epoch_071.png
|
| 722 |
+
13120.7s 734 🏆 Best checkpoint updated | val_loss=4.7447
|
| 723 |
+
13132.8s 735 Step 0/376 | G=5.3708 | D=0.7000
|
| 724 |
+
13178.2s 736 Step 100/376 | G=3.5859 | D=0.6146
|
| 725 |
+
13223.5s 737 Step 200/376 | G=3.2398 | D=0.6210
|
| 726 |
+
13268.8s 738 Step 300/376 | G=3.0854 | D=0.6507
|
| 727 |
+
13
|
| 728 |
+
13
|
| 729 |
+
13290.0s 741 Time 169.27s | G=3.1795 | D=0.6347
|
| 730 |
+
13298.0s 742 Val_loss=4.8294
|
| 731 |
+
13301.0s 743 🖼 Saved sample images to output/epoch_072.png
|
| 732 |
+
13313.0s 744 Step 0/376 | G=4.6913 | D=0.5467
|
| 733 |
+
13358.4s 745 Step 100/376 | G=4.4168 | D=0.6707
|
| 734 |
+
13403.7s 746 Step 200/376 | G=3.3704 | D=0.6365
|
| 735 |
+
13449.1s 747 Step 300/376 | G=3.3304 | D=0.6046
|
| 736 |
+
13
|
| 737 |
+
13
|
| 738 |
+
13470.4s 750 Time 169.37s | G=3.1613 | D=0.6319
|
| 739 |
+
13478.4s 751 Val_loss=4.6030
|
| 740 |
+
13481.5s 752 🖼 Saved sample images to output/epoch_073.png
|
| 741 |
+
13481.8s 753 🏆 Best checkpoint updated | val_loss=4.6030
|
| 742 |
+
13493.9s 754 Step 0/376 | G=6.5052 | D=0.6467
|
| 743 |
+
13539.4s 755 Step 100/376 | G=4.0048 | D=0.5739
|
| 744 |
+
13584.7s 756 Step 200/376 | G=3.2776 | D=0.6492
|
| 745 |
+
13630.0s 757 Step 300/376 | G=2.9286 | D=0.5974
|
| 746 |
+
13
|
| 747 |
+
13
|
| 748 |
+
13660.8s 760 Time 178.91s | G=3.1334 | D=0.6315
|
| 749 |
+
13669.0s 761 Val_loss=4.5431
|
| 750 |
+
13672.2s 762 🖼 Saved sample images to output/epoch_074.png
|
| 751 |
+
13672.5s 763 🏆 Best checkpoint updated | val_loss=4.5431
|
| 752 |
+
13684.6s 764 Step 0/376 | G=6.2637 | D=0.7287
|
| 753 |
+
13730.0s 765 Step 100/376 | G=3.7316 | D=0.6523
|
| 754 |
+
13775.3s 766 Step 200/376 | G=3.4680 | D=0.6680
|
| 755 |
+
13820.6s 767 Step 300/376 | G=2.9001 | D=0.6955
|
| 756 |
+
13
|
| 757 |
+
13
|
| 758 |
+
13842.0s 770 Time 169.46s | G=3.0860 | D=0.6342
|
| 759 |
+
13850.2s 771 Val_loss=4.5978
|
| 760 |
+
13855.7s 772 🖼 Saved sample images to output/epoch_075.png
|
| 761 |
+
13856.0s 773 💾 Checkpoint saved at epoch 75
|
| 762 |
+
13867.9s 774 Step 0/376 | G=5.3579 | D=0.7652
|
| 763 |
+
13913.3s 775 Step 100/376 | G=3.6684 | D=0.5819
|
| 764 |
+
13958.7s 776 Step 200/376 | G=3.1248 | D=0.6668
|
| 765 |
+
14004.0s 777 Step 300/376 | G=2.9518 | D=0.6354
|
| 766 |
+
14
|
| 767 |
+
14
|
| 768 |
+
14025.4s 780 Time 169.31s | G=3.0519 | D=0.6322
|
| 769 |
+
14033.3s 781 Val_loss=4.6097
|
| 770 |
+
14036.4s 782 🖼 Saved sample images to output/epoch_076.png
|
| 771 |
+
14048.3s 783 Step 0/376 | G=5.4006 | D=0.7185
|
| 772 |
+
14093.8s 784 Step 100/376 | G=3.6177 | D=0.5462
|
| 773 |
+
14139.0s 785 Step 200/376 | G=2.7455 | D=0.6766
|
| 774 |
+
14184.4s 786 Step 300/376 | G=2.7631 | D=0.6362
|
| 775 |
+
14
|
| 776 |
+
14
|
| 777 |
+
14205.8s 789 Time 169.36s | G=3.0110 | D=0.6350
|
| 778 |
+
14213.7s 790 Val_loss=4.5112
|
| 779 |
+
14216.7s 791 🖼 Saved sample images to output/epoch_077.png
|
| 780 |
+
14217.0s 792 🏆 Best checkpoint updated | val_loss=4.5112
|
| 781 |
+
14229.1s 793 Step 0/376 | G=4.7770 | D=0.6762
|
| 782 |
+
14274.5s 794 Step 100/376 | G=3.5976 | D=0.5739
|
| 783 |
+
14319.8s 795 Step 200/376 | G=3.3589 | D=0.6383
|
| 784 |
+
14365.1s 796 Step 300/376 | G=2.7231 | D=0.6584
|
| 785 |
+
14
|
| 786 |
+
14
|
| 787 |
+
14386.6s 799 Time 169.60s | G=2.9787 | D=0.6366
|
| 788 |
+
14394.7s 800 Val_loss=4.3760
|
| 789 |
+
14397.7s 801 🖼 Saved sample images to output/epoch_078.png
|
| 790 |
+
14398.0s 802 🏆 Best checkpoint updated | val_loss=4.3760
|
| 791 |
+
14409.9s 803 Step 0/376 | G=5.0417 | D=0.6882
|
| 792 |
+
14455.4s 804 Step 100/376 | G=3.4231 | D=0.5878
|
| 793 |
+
14500.7s 805 Step 200/376 | G=3.2906 | D=0.6477
|
| 794 |
+
14546.0s 806 Step 300/376 | G=2.6614 | D=0.6399
|
| 795 |
+
14
|
| 796 |
+
14
|
| 797 |
+
14567.5s 809 Time 169.42s | G=2.9434 | D=0.6357
|
| 798 |
+
14575.6s 810 Val_loss=4.5083
|
| 799 |
+
14578.7s 811 🖼 Saved sample images to output/epoch_079.png
|
| 800 |
+
14590.8s 812 Step 0/376 | G=6.9896 | D=0.6929
|
| 801 |
+
14636.3s 813 Step 100/376 | G=3.5000 | D=0.5599
|
| 802 |
+
14681.6s 814 Step 200/376 | G=2.8046 | D=0.6534
|
| 803 |
+
14726.9s 815 Step 300/376 | G=3.1000 | D=0.6145
|
| 804 |
+
14
|
| 805 |
+
14
|
| 806 |
+
14748.3s 818 Time 169.60s | G=2.9138 | D=0.6356
|
| 807 |
+
14756.3s 819 Val_loss=4.2344
|
| 808 |
+
14759.4s 820 🖼 Saved sample images to output/epoch_080.png
|
| 809 |
+
14759.7s 821 🏆 Best checkpoint updated | val_loss=4.2344
|
| 810 |
+
14760.0s 822 💾 Checkpoint saved at epoch 80
|
| 811 |
+
14772.0s 823 Step 0/376 | G=4.8706 | D=0.7112
|
| 812 |
+
14817.4s 824 Step 100/376 | G=3.4408 | D=0.5991
|
| 813 |
+
14862.7s 825 Step 200/376 | G=3.0256 | D=0.6408
|
| 814 |
+
14908.0s 826 Step 300/376 | G=2.7274 | D=0.6581
|
| 815 |
+
14
|
| 816 |
+
14
|
| 817 |
+
14929.3s 829 Time 169.28s | G=2.8598 | D=0.6357
|
| 818 |
+
14937.5s 830 Val_loss=4.3669
|
| 819 |
+
14940.6s 831 🖼 Saved sample images to output/epoch_081.png
|
| 820 |
+
14952.5s 832 Step 0/376 | G=5.5032 | D=0.7291
|
| 821 |
+
14997.9s 833 Step 100/376 | G=3.8340 | D=0.6254
|
| 822 |
+
15043.2s 834 Step 200/376 | G=2.8452 | D=0.6226
|
| 823 |
+
15088.6s 835 Step 300/376 | G=2.7787 | D=0.6664
|
| 824 |
+
15
|
| 825 |
+
15
|
| 826 |
+
15120.7s 838 Time 180.04s | G=2.8461 | D=0.6353
|
| 827 |
+
15128.7s 839 Val_loss=4.2840
|
| 828 |
+
15131.7s 840 🖼 Saved sample images to output/epoch_082.png
|
| 829 |
+
15143.8s 841 Step 0/376 | G=5.1436 | D=0.6448
|
| 830 |
+
15189.2s 842 Step 100/376 | G=2.9755 | D=0.5940
|
| 831 |
+
15234.5s 843 Step 200/376 | G=2.9174 | D=0.6628
|
| 832 |
+
15279.8s 844 Step 300/376 | G=2.6727 | D=0.6550
|
| 833 |
+
15
|
| 834 |
+
15
|
| 835 |
+
15301.2s 847 Time 169.40s | G=2.8079 | D=0.6347
|
| 836 |
+
15309.3s 848 Val_loss=4.1996
|
| 837 |
+
15314.8s 849 🖼 Saved sample images to output/epoch_083.png
|
| 838 |
+
15315.1s 850 🏆 Best checkpoint updated | val_loss=4.1996
|
| 839 |
+
15327.1s 851 Step 0/376 | G=5.2726 | D=0.6822
|
| 840 |
+
15372.5s 852 Step 100/376 | G=3.5970 | D=0.6313
|
| 841 |
+
15417.8s 853 Step 200/376 | G=2.7029 | D=0.7004
|
| 842 |
+
15463.1s 854 Step 300/376 | G=2.5813 | D=0.6395
|
| 843 |
+
15
|
| 844 |
+
15
|
| 845 |
+
15484.5s 857 Time 169.34s | G=2.7617 | D=0.6356
|
| 846 |
+
15492.4s 858 Val_loss=4.1724
|
| 847 |
+
15495.5s 859 🖼 Saved sample images to output/epoch_084.png
|
| 848 |
+
15495.8s 860 🏆 Best checkpoint updated | val_loss=4.1724
|
| 849 |
+
15508.0s 861 Step 0/376 | G=4.6803 | D=0.6805
|
| 850 |
+
15553.4s 862 Step 100/376 | G=3.2016 | D=0.6237
|
| 851 |
+
15598.7s 863 Step 200/376 | G=3.1953 | D=0.6630
|
| 852 |
+
15644.0s 864 Step 300/376 | G=2.6157 | D=0.7006
|
| 853 |
+
15
|
| 854 |
+
15
|
| 855 |
+
15665.4s 867 Time 169.59s | G=2.7215 | D=0.6368
|
| 856 |
+
15673.5s 868 Val_loss=4.1145
|
| 857 |
+
15678.9s 869 🖼 Saved sample images to output/epoch_085.png
|
| 858 |
+
15679.2s 870 🏆 Best checkpoint updated | val_loss=4.1145
|
| 859 |
+
15679.6s 871 💾 Checkpoint saved at epoch 85
|
| 860 |
+
15692.1s 872 Step 0/376 | G=4.8261 | D=0.7200
|
| 861 |
+
15737.5s 873 Step 100/376 | G=3.7966 | D=0.6242
|
| 862 |
+
15782.8s 874 Step 200/376 | G=3.2803 | D=0.6386
|
| 863 |
+
15828.2s 875 Step 300/376 | G=2.5505 | D=0.6630
|
| 864 |
+
15
|
| 865 |
+
15
|
| 866 |
+
15849.5s 878 Time 169.87s | G=2.6996 | D=0.6378
|
| 867 |
+
15857.6s 879 Val_loss=4.2780
|
| 868 |
+
15860.7s 880 🖼 Saved sample images to output/epoch_086.png
|
| 869 |
+
15872.8s 881 Step 0/376 | G=4.3633 | D=0.6062
|
| 870 |
+
15918.3s 882 Step 100/376 | G=3.3645 | D=0.5385
|
| 871 |
+
15963.6s 883 Step 200/376 | G=2.5901 | D=0.6135
|
| 872 |
+
16008.9s 884 Step 300/376 | G=2.7246 | D=0.5871
|
| 873 |
+
16
|
| 874 |
+
16
|
| 875 |
+
16030.3s 887 Time 169.60s | G=2.6562 | D=0.6368
|
| 876 |
+
16038.5s 888 Val_loss=4.0184
|
| 877 |
+
16041.6s 889 🖼 Saved sample images to output/epoch_087.png
|
| 878 |
+
16041.9s 890 🏆 Best checkpoint updated | val_loss=4.0184
|
| 879 |
+
16054.0s 891 Step 0/376 | G=3.8949 | D=0.5574
|
| 880 |
+
16099.5s 892 Step 100/376 | G=3.3085 | D=0.6019
|
| 881 |
+
16144.8s 893 Step 200/376 | G=2.7265 | D=0.6345
|
| 882 |
+
16190.1s 894 Step 300/376 | G=2.6312 | D=0.6203
|
| 883 |
+
16
|
| 884 |
+
16
|
| 885 |
+
16211.3s 897 Time 169.44s | G=2.6140 | D=0.6363
|
| 886 |
+
16219.4s 898 Val_loss=3.9724
|
| 887 |
+
16224.8s 899 🖼 Saved sample images to output/epoch_088.png
|
| 888 |
+
16225.1s 900 🏆 Best checkpoint updated | val_loss=3.9724
|
| 889 |
+
16237.1s 901 Step 0/376 | G=4.5991 | D=0.5632
|
| 890 |
+
16282.6s 902 Step 100/376 | G=3.1918 | D=0.6311
|
| 891 |
+
16327.9s 903 Step 200/376 | G=2.8315 | D=0.6645
|
| 892 |
+
16373.2s 904 Step 300/376 | G=2.4876 | D=0.6444
|
| 893 |
+
16
|
| 894 |
+
16
|
| 895 |
+
16394.6s 907 Time 169.40s | G=2.5822 | D=0.6378
|
| 896 |
+
16402.6s 908 Val_loss=4.0451
|
| 897 |
+
16405.7s 909 🖼 Saved sample images to output/epoch_089.png
|
| 898 |
+
16418.0s 910 Step 0/376 | G=4.6367 | D=0.6808
|
| 899 |
+
16463.4s 911 Step 100/376 | G=3.2083 | D=0.5872
|
| 900 |
+
16508.8s 912 Step 200/376 | G=2.9264 | D=0.6365
|
| 901 |
+
16554.1s 913 Step 300/376 | G=2.1684 | D=0.6539
|
| 902 |
+
16
|
| 903 |
+
16
|
| 904 |
+
16575.5s 916 Time 169.79s | G=2.5478 | D=0.6362
|
| 905 |
+
16583.7s 917 Val_loss=3.9122
|
| 906 |
+
16586.7s 918 🖼 Saved sample images to output/epoch_090.png
|
| 907 |
+
16598.7s 919 🏆 Best checkpoint updated | val_loss=3.9122
|
| 908 |
+
16599.2s 920 💾 Checkpoint saved at epoch 90
|
| 909 |
+
16611.3s 921 Step 0/376 | G=4.0842 | D=0.7403
|
| 910 |
+
16656.8s 922 Step 100/376 | G=3.0089 | D=0.5677
|
| 911 |
+
16702.1s 923 Step 200/376 | G=2.7950 | D=0.6168
|
| 912 |
+
16747.5s 924 Step 300/376 | G=2.4747 | D=0.6055
|
| 913 |
+
16
|
| 914 |
+
16
|
| 915 |
+
16768.9s 927 Time 169.63s | G=2.4920 | D=0.6390
|
| 916 |
+
16777.0s 928 Val_loss=3.8380
|
| 917 |
+
16780.2s 929 🖼 Saved sample images to output/epoch_091.png
|
| 918 |
+
16780.4s 930 🏆 Best checkpoint updated | val_loss=3.8380
|
| 919 |
+
16792.9s 931 Step 0/376 | G=5.4327 | D=0.6846
|
| 920 |
+
16838.4s 932 Step 100/376 | G=3.3698 | D=0.6232
|
| 921 |
+
16883.7s 933 Step 200/376 | G=2.7433 | D=0.6527
|
| 922 |
+
16929.0s 934 Step 300/376 | G=2.5256 | D=0.6204
|
| 923 |
+
16
|
| 924 |
+
16
|
| 925 |
+
16950.3s 937 Time 169.84s | G=2.4625 | D=0.6406
|
| 926 |
+
16958.5s 938 Val_loss=3.7432
|
| 927 |
+
16961.6s 939 🖼 Saved sample images to output/epoch_092.png
|
| 928 |
+
16961.9s 940 🏆 Best checkpoint updated | val_loss=3.7432
|
| 929 |
+
16974.3s 941 Step 0/376 | G=3.5366 | D=0.5955
|
| 930 |
+
17019.7s 942 Step 100/376 | G=3.5291 | D=0.5829
|
| 931 |
+
17065.1s 943 Step 200/376 | G=2.5609 | D=0.6201
|
| 932 |
+
17110.4s 944 Step 300/376 | G=2.5530 | D=0.6388
|
| 933 |
+
17
|
| 934 |
+
17
|
| 935 |
+
17131.7s 947 Time 169.80s | G=2.4321 | D=0.6390
|
| 936 |
+
17139.9s 948 Val_loss=3.8107
|
| 937 |
+
17143.1s 949 🖼 Saved sample images to output/epoch_093.png
|
| 938 |
+
17155.3s 950 Step 0/376 | G=4.7956 | D=0.7008
|
| 939 |
+
17200.8s 951 Step 100/376 | G=3.2964 | D=0.6357
|
| 940 |
+
17246.1s 952 Step 200/376 | G=2.7449 | D=0.6916
|
| 941 |
+
17291.4s 953 Step 300/376 | G=2.3979 | D=0.6455
|
| 942 |
+
17
|
| 943 |
+
17
|
| 944 |
+
17313.0s 956 Time 169.92s | G=2.4041 | D=0.6396
|
| 945 |
+
17321.2s 957 Val_loss=3.6839
|
| 946 |
+
17324.3s 958 🖼 Saved sample images to output/epoch_094.png
|
| 947 |
+
17324.6s 959 🏆 Best checkpoint updated | val_loss=3.6839
|
| 948 |
+
17336.8s 960 Step 0/376 | G=4.4018 | D=0.7070
|
| 949 |
+
17382.2s 961 Step 100/376 | G=3.0409 | D=0.5230
|
| 950 |
+
17427.6s 962 Step 200/376 | G=2.5092 | D=0.6279
|
| 951 |
+
17472.9s 963 Step 300/376 | G=2.1991 | D=0.5932
|
| 952 |
+
17
|
| 953 |
+
17
|
| 954 |
+
17494.1s 966 Time 169.47s | G=2.3599 | D=0.6390
|
| 955 |
+
17502.3s 967 Val_loss=3.5712
|
| 956 |
+
17505.4s 968 🖼 Saved sample images to output/epoch_095.png
|
| 957 |
+
17505.7s 969 🏆 Best checkpoint updated | val_loss=3.5712
|
| 958 |
+
17506.0s 970 💾 Checkpoint saved at epoch 95
|
| 959 |
+
17518.2s 971 Step 0/376 | G=4.8006 | D=0.6310
|
| 960 |
+
17563.7s 972 Step 100/376 | G=2.7726 | D=0.6086
|
| 961 |
+
17609.0s 973 Step 200/376 | G=2.5687 | D=0.6676
|
| 962 |
+
17654.3s 974 Step 300/376 | G=2.2540 | D=0.6034
|
| 963 |
+
17
|
| 964 |
+
17
|
| 965 |
+
17675.7s 977 Time 169.57s | G=2.3281 | D=0.6411
|
| 966 |
+
17683.8s 978 Val_loss=3.5431
|
| 967 |
+
17686.8s 979 🖼 Saved sample images to output/epoch_096.png
|
| 968 |
+
17687.1s 980 🏆 Best checkpoint updated | val_loss=3.5431
|
| 969 |
+
17698.9s 981 Step 0/376 | G=3.7862 | D=0.7004
|
| 970 |
+
17744.4s 982 Step 100/376 | G=2.4434 | D=0.5949
|
| 971 |
+
17789.7s 983 Step 200/376 | G=2.2817 | D=0.6858
|
| 972 |
+
17835.0s 984 Step 300/376 | G=2.2642 | D=0.6941
|
| 973 |
+
17
|
| 974 |
+
17
|
| 975 |
+
17856.5s 987 Time 169.31s | G=2.2933 | D=0.6421
|
| 976 |
+
17864.7s 988 Val_loss=3.5863
|
| 977 |
+
17867.7s 989 🖼 Saved sample images to output/epoch_097.png
|
| 978 |
+
17879.8s 990 Step 0/376 | G=3.7193 | D=0.5015
|
| 979 |
+
17925.3s 991 Step 100/376 | G=2.9299 | D=0.6352
|
| 980 |
+
17970.6s 992 Step 200/376 | G=2.1576 | D=0.6579
|
| 981 |
+
18015.9s 993 Step 300/376 | G=2.2175 | D=0.6783
|
| 982 |
+
18
|
| 983 |
+
18
|
| 984 |
+
18037.4s 996 Time 169.67s | G=2.2444 | D=0.6416
|
| 985 |
+
18045.5s 997 Val_loss=3.4525
|
| 986 |
+
18048.6s 998 🖼 Saved sample images to output/epoch_098.png
|
| 987 |
+
18048.8s 999 🏆 Best checkpoint updated | val_loss=3.4525
|
| 988 |
+
18060.8s 1000 Step 0/376 | G=4.0367 | D=0.5751
|
| 989 |
+
18106.2s 1001 Step 100/376 | G=2.8571 | D=0.6623
|
| 990 |
+
18151.5s 1002 Step 200/376 | G=2.0538 | D=0.7090
|
| 991 |
+
18196.8s 1003 Step 300/376 | G=2.3591 | D=0.6435
|
| 992 |
+
182
|
| 993 |
+
182
|
| 994 |
+
18218.2s 1006 Time 169.29s | G=2.2198 | D=0.6383
|
| 995 |
+
18226.3s 1007 Val_loss=3.4924
|
| 996 |
+
18229.4s 1008 🖼 Saved sample images to output/epoch_099.png
|
| 997 |
+
18254.3s 1009 Step 0/376 | G=4.7228 | D=0.5148
|
| 998 |
+
18299.9s 1010 Step 100/376 | G=2.9035 | D=0.5484
|
| 999 |
+
18345.2s 1011 Step 200/376 | G=2.7119 | D=0.6533
|
| 1000 |
+
18390.5s 1012 Step 300/376 | G=2.1389 | D=0.6548
|
| 1001 |
+
184
|
| 1002 |
+
184
|
| 1003 |
+
18412.1s 1015 Time 182.69s | G=2.1891 | D=0.6406
|
| 1004 |
+
18420.2s 1016 Val_loss=3.4315
|
| 1005 |
+
18423.3s 1017 🖼 Saved sample images to output/epoch_100.png
|
| 1006 |
+
18423.6s 1018 🏆 Best checkpoint updated | val_loss=3.4315
|
| 1007 |
+
18423.9s 1019 💾 Checkpoint saved at epoch 100
|
| 1008 |
+
18423.9s 1020 ✅ Training complete and models saved!
|
| 1009 |
+
18487.2s 1021 ==== Test Dataset Metrics ====
|
| 1010 |
+
18487.2s 1022 L1 Loss : 0.0570
|
| 1011 |
+
18487.2s 1023 PSNR : 24.4505
|
| 1012 |
+
18487.2s 1024 SSIM : 0.8575
|
| 1013 |
+
19258.6s 1027 L1 Loss : 0.0570
|
| 1014 |
+
19258.6s 1028 PSNR : 24.4500
|
| 1015 |
+
19258.6s 1029 SSIM : 0.8576
|
| 1016 |
+
19258.6s 1030 All predictions saved to output/test_results
|
loss_summary.csv
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Epoch,Generator,Discriminator,Val_loss
|
| 2 |
+
1,7.27804,0.60068,8.1308
|
| 3 |
+
2,6.9991200000000005,0.60924,8.0259
|
| 4 |
+
3,6.63356,0.6204,7.9718
|
| 5 |
+
4,6.8093,0.65844,7.9856
|
| 6 |
+
5,6.827920000000001,0.62926,7.8545
|
| 7 |
+
6,6.65252,0.63148,7.7142
|
| 8 |
+
7,6.617520000000001,0.6107,7.7325
|
| 9 |
+
8,6.98754,0.6439600000000001,7.637
|
| 10 |
+
9,6.29016,0.64732,7.6658
|
| 11 |
+
10,6.33734,0.59926,7.6524
|
| 12 |
+
11,6.2555,0.70184,7.6458
|
| 13 |
+
12,6.078860000000001,0.64534,7.3745
|
| 14 |
+
13,6.45162,0.67594,7.5291
|
| 15 |
+
14,6.36704,0.67336,7.3649
|
| 16 |
+
15,6.29538,0.6449,7.1946
|
| 17 |
+
16,6.279100000000001,0.65746,7.1181
|
| 18 |
+
17,6.1164000000000005,0.6752,7.2863
|
| 19 |
+
18,6.21926,0.65078,7.0963
|
| 20 |
+
19,5.98202,0.62074,7.179
|
| 21 |
+
20,6.07066,0.69488,7.0951
|
| 22 |
+
21,5.79988,0.6538999999999999,7.0698
|
| 23 |
+
22,5.9826,0.62706,7.0145
|
| 24 |
+
23,5.762980000000001,0.66268,6.87
|
| 25 |
+
24,5.74644,0.60262,6.9174
|
| 26 |
+
25,5.48806,0.65498,6.7568
|
| 27 |
+
26,5.6554400000000005,0.67892,7.1181
|
| 28 |
+
27,5.6830799999999995,0.62648,6.8917
|
| 29 |
+
28,5.77714,0.6575,6.8348
|
| 30 |
+
29,5.4423200000000005,0.65126,6.9368
|
| 31 |
+
30,5.423399999999999,0.60072,6.5834
|
| 32 |
+
31,5.50952,0.6161399999999999,6.5301
|
| 33 |
+
32,5.40386,0.65516,6.4039
|
| 34 |
+
33,5.43838,0.6235999999999999,6.4423
|
| 35 |
+
34,5.29168,0.6380600000000001,6.5015
|
| 36 |
+
35,5.4109,0.65004,6.4034
|
| 37 |
+
36,5.35616,0.6566799999999999,6.3655
|
| 38 |
+
37,4.9687600000000005,0.62868,6.3378
|
| 39 |
+
38,5.1176,0.5995,6.3234
|
| 40 |
+
39,5.25794,0.65136,6.2702
|
| 41 |
+
40,5.27684,0.65892,6.2376
|
| 42 |
+
41,5.45064,0.6427400000000001,6.2099
|
| 43 |
+
42,5.26594,0.6494,6.1295
|
| 44 |
+
43,5.01788,0.62946,5.9122
|
| 45 |
+
44,5.16266,0.66524,5.9393
|
| 46 |
+
45,4.8068,0.63556,6.0035
|
| 47 |
+
46,4.91862,0.6141,5.969
|
| 48 |
+
47,4.9694400000000005,0.6777,5.9383
|
| 49 |
+
48,4.94618,0.6176600000000001,5.9086
|
| 50 |
+
49,4.62196,0.6150599999999999,5.7599
|
| 51 |
+
50,4.8838,0.6529200000000001,5.6452
|
| 52 |
+
51,4.78028,0.6249800000000001,5.6258
|
| 53 |
+
52,4.7116,0.6391600000000001,5.8241
|
| 54 |
+
53,4.359640000000001,0.63602,5.6002
|
| 55 |
+
54,4.68848,0.62208,5.4908
|
| 56 |
+
55,4.584960000000001,0.63548,5.4853
|
| 57 |
+
56,4.65574,0.64452,5.6348
|
| 58 |
+
57,4.43412,0.68102,5.4346
|
| 59 |
+
58,4.48668,0.61844,5.2923
|
| 60 |
+
59,4.33262,0.6327,5.2706
|
| 61 |
+
60,4.24664,0.64778,5.4209
|
| 62 |
+
61,4.189439999999999,0.61512,5.2053
|
| 63 |
+
62,4.38198,0.65918,5.2976
|
| 64 |
+
63,4.12894,0.64366,5.2755
|
| 65 |
+
64,4.14692,0.66568,5.1321
|
| 66 |
+
65,4.1536,0.631,4.9427
|
| 67 |
+
66,3.96756,0.6635,5.0014
|
| 68 |
+
67,4.26708,0.64056,4.9945
|
| 69 |
+
68,4.0198,0.64092,4.9362
|
| 70 |
+
69,3.8781800000000004,0.67388,4.8826
|
| 71 |
+
70,3.6549799999999997,0.62978,4.9833
|
| 72 |
+
71,3.96222,0.64176,4.7447
|
| 73 |
+
72,3.6922800000000002,0.6442,4.8294
|
| 74 |
+
73,3.7940400000000003,0.61808,4.603
|
| 75 |
+
74,3.9699200000000006,0.61974,4.5431
|
| 76 |
+
75,3.8898800000000002,0.67574,4.5978
|
| 77 |
+
76,3.6309600000000004,0.6563,4.6097
|
| 78 |
+
77,3.50758,0.6425,4.5112
|
| 79 |
+
78,3.4870600000000005,0.6366799999999999,4.376
|
| 80 |
+
79,3.47204,0.63986,4.5083
|
| 81 |
+
80,3.8616,0.6312599999999999,4.2344
|
| 82 |
+
81,3.3848399999999996,0.6489800000000001,4.3669
|
| 83 |
+
82,3.56144,0.65576,4.284
|
| 84 |
+
83,3.30342,0.63826,4.1996
|
| 85 |
+
84,3.3831,0.6578,4.1724
|
| 86 |
+
85,3.28288,0.6609200000000001,4.1145
|
| 87 |
+
86,3.4306200000000002,0.65672,4.278
|
| 88 |
+
87,3.13974,0.59642,4.0184
|
| 89 |
+
88,3.0350200000000003,0.61008,3.9724
|
| 90 |
+
89,3.13844,0.6282,4.0451
|
| 91 |
+
90,3.0975200000000003,0.6389199999999999,3.9122
|
| 92 |
+
91,2.9709600000000003,0.63386,3.838
|
| 93 |
+
92,3.30678,0.6443,3.7432
|
| 94 |
+
93,2.92234,0.6152599999999999,3.8107
|
| 95 |
+
94,3.12778,0.66264,3.6839
|
| 96 |
+
95,2.90218,0.61802,3.5712
|
| 97 |
+
96,2.9448,0.63034,3.5431
|
| 98 |
+
97,2.61376,0.6634599999999999,3.5863
|
| 99 |
+
98,2.65374,0.6229,3.4525
|
| 100 |
+
99,2.7053000000000003,0.64564,3.4924
|
| 101 |
+
100,2.93324,0.6023799999999999,3.4315
|
test_001.png
ADDED
|
Git LFS Details
|
test_1179.png
ADDED
|
Git LFS Details
|
test_12015.png
ADDED
|
Git LFS Details
|
test_4884.png
ADDED
|
Git LFS Details
|
test_5269.png
ADDED
|
Git LFS Details
|
test_5361.png
ADDED
|
Git LFS Details
|
test_7255.png
ADDED
|
Git LFS Details
|
test_7362.png
ADDED
|
Git LFS Details
|
train_loss_curve.png
ADDED
|
val_loss_curve.png
ADDED
|