update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: extended_distilBERT-finetuned-resumes-sections
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# extended_distilBERT-finetuned-resumes-sections
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Geotrend/distilbert-base-en-fr-cased](https://huggingface.co/Geotrend/distilbert-base-en-fr-cased) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0321
|
21 |
+
- F1: 0.9735
|
22 |
+
- Roc Auc: 0.9850
|
23 |
+
- Accuracy: 0.9715
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 20
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|
|
54 |
+
| 0.0283 | 1.0 | 2213 | 0.0247 | 0.9610 | 0.9763 | 0.9539 |
|
55 |
+
| 0.0153 | 2.0 | 4426 | 0.0223 | 0.9634 | 0.9789 | 0.9593 |
|
56 |
+
| 0.01 | 3.0 | 6639 | 0.0199 | 0.9702 | 0.9835 | 0.9675 |
|
57 |
+
| 0.0073 | 4.0 | 8852 | 0.0218 | 0.9710 | 0.9838 | 0.9690 |
|
58 |
+
| 0.0063 | 5.0 | 11065 | 0.0244 | 0.9706 | 0.9835 | 0.9684 |
|
59 |
+
| 0.0037 | 6.0 | 13278 | 0.0251 | 0.9700 | 0.9833 | 0.9684 |
|
60 |
+
| 0.004 | 7.0 | 15491 | 0.0273 | 0.9712 | 0.9837 | 0.9693 |
|
61 |
+
| 0.003 | 8.0 | 17704 | 0.0266 | 0.9719 | 0.9841 | 0.9695 |
|
62 |
+
| 0.0027 | 9.0 | 19917 | 0.0294 | 0.9697 | 0.9831 | 0.9679 |
|
63 |
+
| 0.0014 | 10.0 | 22130 | 0.0275 | 0.9714 | 0.9844 | 0.9690 |
|
64 |
+
| 0.0016 | 11.0 | 24343 | 0.0299 | 0.9714 | 0.9839 | 0.9697 |
|
65 |
+
| 0.0013 | 12.0 | 26556 | 0.0297 | 0.9719 | 0.9852 | 0.9697 |
|
66 |
+
| 0.0006 | 13.0 | 28769 | 0.0312 | 0.9711 | 0.9843 | 0.9697 |
|
67 |
+
| 0.0004 | 14.0 | 30982 | 0.0305 | 0.9731 | 0.9849 | 0.9720 |
|
68 |
+
| 0.0004 | 15.0 | 33195 | 0.0312 | 0.9723 | 0.9845 | 0.9704 |
|
69 |
+
| 0.0005 | 16.0 | 35408 | 0.0331 | 0.9716 | 0.9843 | 0.9697 |
|
70 |
+
| 0.0006 | 17.0 | 37621 | 0.0321 | 0.9735 | 0.9850 | 0.9715 |
|
71 |
+
| 0.0004 | 18.0 | 39834 | 0.0322 | 0.9731 | 0.9850 | 0.9711 |
|
72 |
+
| 0.0003 | 19.0 | 42047 | 0.0332 | 0.9722 | 0.9847 | 0.9706 |
|
73 |
+
| 0.0004 | 20.0 | 44260 | 0.0334 | 0.9720 | 0.9846 | 0.9704 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.21.3
|
79 |
+
- Pytorch 1.12.1+cu113
|
80 |
+
- Datasets 2.4.0
|
81 |
+
- Tokenizers 0.12.1
|