Initial Commit
Browse files- README.md +65 -73
- eval_result_ner.json +1 -1
- model.safetensors +1 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
---
|
2 |
-
base_model: microsoft/mdeberta-v3-base
|
3 |
library_name: transformers
|
4 |
license: mit
|
|
|
|
|
|
|
5 |
metrics:
|
6 |
- precision
|
7 |
- recall
|
8 |
- f1
|
9 |
- accuracy
|
10 |
-
tags:
|
11 |
-
- generated_from_trainer
|
12 |
model-index:
|
13 |
- name: scenario-non-kd-scr-ner-half-mdeberta_data-univner_full44
|
14 |
results: []
|
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
21 |
|
22 |
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
- Loss: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
-
- Accuracy: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -56,71 +56,63 @@ The following hyperparameters were used during training:
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.066 | 2.6193 | 4500 | 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.0098 | 8.1490 | 14000 | 0.
|
87 |
-
| 0.
|
88 |
-
| 0.0097 | 8.7311 | 15000 | 0.
|
89 |
-
| 0.
|
90 |
-
| 0.0064 | 9.3132 | 16000 | 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.0054 | 11.0594 | 19000 | 0.
|
97 |
-
| 0.
|
98 |
-
| 0.0048 | 11.6414 | 20000 | 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.0025 | 14.5518 | 25000 | 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.0017 | 16.8801 | 29000 | 0.3006 | 0.6080 | 0.5838 | 0.5956 | 0.9614 |
|
117 |
-
| 0.0016 | 17.1711 | 29500 | 0.3078 | 0.5986 | 0.5921 | 0.5953 | 0.9612 |
|
118 |
-
| 0.0016 | 17.4622 | 30000 | 0.3066 | 0.6084 | 0.5892 | 0.5987 | 0.9617 |
|
119 |
-
| 0.0015 | 17.7532 | 30500 | 0.3153 | 0.6110 | 0.5786 | 0.5943 | 0.9617 |
|
120 |
-
| 0.0015 | 18.0442 | 31000 | 0.3134 | 0.5952 | 0.5954 | 0.5953 | 0.9611 |
|
121 |
-
| 0.0009 | 18.3353 | 31500 | 0.3201 | 0.6045 | 0.5904 | 0.5974 | 0.9615 |
|
122 |
-
| 0.0017 | 18.6263 | 32000 | 0.3149 | 0.6095 | 0.5875 | 0.5983 | 0.9614 |
|
123 |
-
| 0.0014 | 18.9173 | 32500 | 0.3227 | 0.6152 | 0.5804 | 0.5973 | 0.9617 |
|
124 |
|
125 |
|
126 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
library_name: transformers
|
3 |
license: mit
|
4 |
+
base_model: microsoft/mdeberta-v3-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
10 |
- f1
|
11 |
- accuracy
|
|
|
|
|
12 |
model-index:
|
13 |
- name: scenario-non-kd-scr-ner-half-mdeberta_data-univner_full44
|
14 |
results: []
|
|
|
21 |
|
22 |
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.3028
|
25 |
+
- Precision: 0.6277
|
26 |
+
- Recall: 0.5869
|
27 |
+
- F1: 0.6066
|
28 |
+
- Accuracy: 0.9615
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
|:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.36 | 0.2910 | 500 | 0.2872 | 0.2875 | 0.1173 | 0.1666 | 0.9284 |
|
60 |
+
| 0.2389 | 0.5821 | 1000 | 0.2086 | 0.3476 | 0.2561 | 0.2949 | 0.9388 |
|
61 |
+
| 0.1727 | 0.8731 | 1500 | 0.1810 | 0.4363 | 0.3748 | 0.4033 | 0.9465 |
|
62 |
+
| 0.1338 | 1.1641 | 2000 | 0.1644 | 0.4626 | 0.4675 | 0.4650 | 0.9514 |
|
63 |
+
| 0.1122 | 1.4552 | 2500 | 0.1560 | 0.4983 | 0.5063 | 0.5023 | 0.9538 |
|
64 |
+
| 0.1033 | 1.7462 | 3000 | 0.1504 | 0.5354 | 0.5128 | 0.5238 | 0.9564 |
|
65 |
+
| 0.0919 | 2.0373 | 3500 | 0.1475 | 0.5073 | 0.5452 | 0.5256 | 0.9558 |
|
66 |
+
| 0.0665 | 2.3283 | 4000 | 0.1547 | 0.5536 | 0.5578 | 0.5557 | 0.9583 |
|
67 |
+
| 0.066 | 2.6193 | 4500 | 0.1513 | 0.5345 | 0.5760 | 0.5545 | 0.9581 |
|
68 |
+
| 0.0642 | 2.9104 | 5000 | 0.1489 | 0.5750 | 0.5683 | 0.5716 | 0.9605 |
|
69 |
+
| 0.0495 | 3.2014 | 5500 | 0.1597 | 0.5769 | 0.5711 | 0.5740 | 0.9600 |
|
70 |
+
| 0.0437 | 3.4924 | 6000 | 0.1643 | 0.5848 | 0.5680 | 0.5763 | 0.9603 |
|
71 |
+
| 0.0444 | 3.7835 | 6500 | 0.1615 | 0.5884 | 0.5898 | 0.5891 | 0.9607 |
|
72 |
+
| 0.0409 | 4.0745 | 7000 | 0.1723 | 0.5869 | 0.5761 | 0.5815 | 0.9606 |
|
73 |
+
| 0.0313 | 4.3655 | 7500 | 0.1740 | 0.5871 | 0.5930 | 0.5900 | 0.9606 |
|
74 |
+
| 0.032 | 4.6566 | 8000 | 0.1682 | 0.5911 | 0.6031 | 0.5971 | 0.9611 |
|
75 |
+
| 0.0304 | 4.9476 | 8500 | 0.1771 | 0.6070 | 0.5783 | 0.5923 | 0.9613 |
|
76 |
+
| 0.0228 | 5.2386 | 9000 | 0.1843 | 0.5817 | 0.6045 | 0.5929 | 0.9608 |
|
77 |
+
| 0.0216 | 5.5297 | 9500 | 0.1841 | 0.5938 | 0.6142 | 0.6038 | 0.9609 |
|
78 |
+
| 0.0232 | 5.8207 | 10000 | 0.1957 | 0.5816 | 0.5998 | 0.5906 | 0.9600 |
|
79 |
+
| 0.0201 | 6.1118 | 10500 | 0.1982 | 0.6049 | 0.5963 | 0.6006 | 0.9611 |
|
80 |
+
| 0.0153 | 6.4028 | 11000 | 0.2040 | 0.5919 | 0.6057 | 0.5987 | 0.9602 |
|
81 |
+
| 0.0165 | 6.6938 | 11500 | 0.2039 | 0.6000 | 0.5988 | 0.5994 | 0.9609 |
|
82 |
+
| 0.0165 | 6.9849 | 12000 | 0.2076 | 0.5963 | 0.5913 | 0.5938 | 0.9606 |
|
83 |
+
| 0.0121 | 7.2759 | 12500 | 0.2178 | 0.6015 | 0.5833 | 0.5923 | 0.9604 |
|
84 |
+
| 0.012 | 7.5669 | 13000 | 0.2186 | 0.6206 | 0.5902 | 0.6050 | 0.9613 |
|
85 |
+
| 0.0126 | 7.8580 | 13500 | 0.2218 | 0.5882 | 0.6191 | 0.6033 | 0.9600 |
|
86 |
+
| 0.0098 | 8.1490 | 14000 | 0.2296 | 0.6164 | 0.5911 | 0.6035 | 0.9617 |
|
87 |
+
| 0.0091 | 8.4400 | 14500 | 0.2332 | 0.5986 | 0.5976 | 0.5981 | 0.9607 |
|
88 |
+
| 0.0097 | 8.7311 | 15000 | 0.2322 | 0.6053 | 0.5996 | 0.6024 | 0.9613 |
|
89 |
+
| 0.0089 | 9.0221 | 15500 | 0.2355 | 0.6174 | 0.6034 | 0.6103 | 0.9612 |
|
90 |
+
| 0.0064 | 9.3132 | 16000 | 0.2440 | 0.6306 | 0.5835 | 0.6061 | 0.9614 |
|
91 |
+
| 0.0071 | 9.6042 | 16500 | 0.2451 | 0.6220 | 0.5761 | 0.5982 | 0.9609 |
|
92 |
+
| 0.0073 | 9.8952 | 17000 | 0.2461 | 0.6203 | 0.5990 | 0.6095 | 0.9616 |
|
93 |
+
| 0.0064 | 10.1863 | 17500 | 0.2506 | 0.6213 | 0.5900 | 0.6052 | 0.9615 |
|
94 |
+
| 0.005 | 10.4773 | 18000 | 0.2547 | 0.6226 | 0.5970 | 0.6096 | 0.9617 |
|
95 |
+
| 0.0058 | 10.7683 | 18500 | 0.2553 | 0.6374 | 0.5897 | 0.6126 | 0.9620 |
|
96 |
+
| 0.0054 | 11.0594 | 19000 | 0.2624 | 0.6232 | 0.5840 | 0.6030 | 0.9617 |
|
97 |
+
| 0.0044 | 11.3504 | 19500 | 0.2655 | 0.6262 | 0.5946 | 0.6100 | 0.9620 |
|
98 |
+
| 0.0048 | 11.6414 | 20000 | 0.2654 | 0.6154 | 0.5989 | 0.6070 | 0.9616 |
|
99 |
+
| 0.0042 | 11.9325 | 20500 | 0.2724 | 0.6306 | 0.5806 | 0.6046 | 0.9616 |
|
100 |
+
| 0.004 | 12.2235 | 21000 | 0.2707 | 0.6052 | 0.5920 | 0.5985 | 0.9607 |
|
101 |
+
| 0.0035 | 12.5146 | 21500 | 0.2714 | 0.5962 | 0.5986 | 0.5974 | 0.9607 |
|
102 |
+
| 0.0041 | 12.8056 | 22000 | 0.2755 | 0.6263 | 0.5858 | 0.6053 | 0.9616 |
|
103 |
+
| 0.0035 | 13.0966 | 22500 | 0.2842 | 0.6350 | 0.5814 | 0.6071 | 0.9614 |
|
104 |
+
| 0.0033 | 13.3877 | 23000 | 0.2763 | 0.6317 | 0.5868 | 0.6084 | 0.9614 |
|
105 |
+
| 0.0028 | 13.6787 | 23500 | 0.2831 | 0.6141 | 0.5976 | 0.6057 | 0.9616 |
|
106 |
+
| 0.0031 | 13.9697 | 24000 | 0.2797 | 0.6141 | 0.6064 | 0.6102 | 0.9614 |
|
107 |
+
| 0.0024 | 14.2608 | 24500 | 0.2873 | 0.5980 | 0.6038 | 0.6009 | 0.9611 |
|
108 |
+
| 0.0025 | 14.5518 | 25000 | 0.2913 | 0.6055 | 0.5980 | 0.6017 | 0.9612 |
|
109 |
+
| 0.003 | 14.8428 | 25500 | 0.2885 | 0.6208 | 0.5843 | 0.6020 | 0.9615 |
|
110 |
+
| 0.0023 | 15.1339 | 26000 | 0.2923 | 0.6255 | 0.5849 | 0.6045 | 0.9618 |
|
111 |
+
| 0.0019 | 15.4249 | 26500 | 0.2875 | 0.6221 | 0.6015 | 0.6116 | 0.9619 |
|
112 |
+
| 0.0027 | 15.7159 | 27000 | 0.2898 | 0.6241 | 0.5967 | 0.6101 | 0.9619 |
|
113 |
+
| 0.0024 | 16.0070 | 27500 | 0.2943 | 0.6146 | 0.5895 | 0.6018 | 0.9612 |
|
114 |
+
| 0.0016 | 16.2980 | 28000 | 0.2996 | 0.6199 | 0.5928 | 0.6060 | 0.9614 |
|
115 |
+
| 0.0022 | 16.5891 | 28500 | 0.3028 | 0.6277 | 0.5869 | 0.6066 | 0.9615 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
|
118 |
### Framework versions
|
eval_result_ner.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"ceb_gja": {"precision": 0.
|
|
|
1 |
+
{"ceb_gja": {"precision": 0.25263157894736843, "recall": 0.4897959183673469, "f1": 0.3333333333333333, "accuracy": 0.9204633204633205}, "en_pud": {"precision": 0.5005807200929152, "recall": 0.40093023255813953, "f1": 0.4452479338842975, "accuracy": 0.9482905175670571}, "de_pud": {"precision": 0.15625, "recall": 0.30317613089509143, "f1": 0.20621931260229132, "accuracy": 0.867751160283156}, "pt_pud": {"precision": 0.5947265625, "recall": 0.554140127388535, "f1": 0.5737164390014131, "accuracy": 0.960225573546375}, "ru_pud": {"precision": 0.019720419370943584, "recall": 0.07625482625482626, "f1": 0.031336771122570405, "accuracy": 0.6247997933350555}, "sv_pud": {"precision": 0.5223880597014925, "recall": 0.30612244897959184, "f1": 0.38602941176470584, "accuracy": 0.9446424827007759}, "tl_trg": {"precision": 0.16883116883116883, "recall": 0.5652173913043478, "f1": 0.25999999999999995, "accuracy": 0.896457765667575}, "tl_ugnayan": {"precision": 0.04819277108433735, "recall": 0.12121212121212122, "f1": 0.06896551724137931, "accuracy": 0.8933454876937101}, "zh_gsd": {"precision": 0.5743801652892562, "recall": 0.5436766623207301, "f1": 0.5586068318821165, "accuracy": 0.9411421911421911}, "zh_gsdsimp": {"precision": 0.5818965517241379, "recall": 0.5307994757536042, "f1": 0.5551747772446882, "accuracy": 0.9408924408924408}, "hr_set": {"precision": 0.7829691032403918, "recall": 0.7405559515324305, "f1": 0.7611721611721611, "accuracy": 0.9725474031327288}, "da_ddt": {"precision": 0.7002724795640327, "recall": 0.5749440715883669, "f1": 0.6314496314496315, "accuracy": 0.9725631048588247}, "en_ewt": {"precision": 0.648590021691974, "recall": 0.5496323529411765, "f1": 0.5950248756218905, "accuracy": 0.9619077977447503}, "pt_bosque": {"precision": 0.6499148211243612, "recall": 0.6279835390946502, "f1": 0.6387609878610296, "accuracy": 0.9667077235183307}, "sr_set": {"precision": 0.7949640287769785, "recall": 0.7827626918536009, "f1": 0.7888161808447354, "accuracy": 0.9697049295158042}, "sk_snk": {"precision": 0.3938356164383562, "recall": 0.25136612021857924, "f1": 0.3068712474983323, "accuracy": 0.9152795226130653}, "sv_talbanken": {"precision": 0.6878980891719745, "recall": 0.5510204081632653, "f1": 0.6118980169971672, "accuracy": 0.9936202581341709}}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 428939068
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f362fbddd893cbafd504c0e6288835b64749bd8255a63a8d04a485b553bba50
|
3 |
size 428939068
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5304
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2139262c6153d3b2e1092bc3968591c4691f81105fafc995dcd06d99f50f000
|
3 |
size 5304
|