haryoaw commited on
Commit
a144e61
1 Parent(s): 3f000b0

Initial Commit

Browse files
Files changed (4) hide show
  1. README.md +65 -73
  2. eval_result_ner.json +1 -1
  3. model.safetensors +1 -1
  4. training_args.bin +1 -1
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- base_model: microsoft/mdeberta-v3-base
3
  library_name: transformers
4
  license: mit
 
 
 
5
  metrics:
6
  - precision
7
  - recall
8
  - f1
9
  - accuracy
10
- tags:
11
- - generated_from_trainer
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-half-mdeberta_data-univner_full44
14
  results: []
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.3227
25
- - Precision: 0.6152
26
- - Recall: 0.5804
27
- - F1: 0.5973
28
- - Accuracy: 0.9617
29
 
30
  ## Model description
31
 
@@ -56,71 +56,63 @@ The following hyperparameters were used during training:
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 0.357 | 0.2910 | 500 | 0.2880 | 0.3006 | 0.1147 | 0.1660 | 0.9285 |
60
- | 0.2425 | 0.5821 | 1000 | 0.2106 | 0.3468 | 0.2782 | 0.3087 | 0.9383 |
61
- | 0.1767 | 0.8731 | 1500 | 0.1785 | 0.4322 | 0.3857 | 0.4076 | 0.9469 |
62
- | 0.1352 | 1.1641 | 2000 | 0.1621 | 0.4749 | 0.4745 | 0.4747 | 0.9520 |
63
- | 0.1107 | 1.4552 | 2500 | 0.1556 | 0.5238 | 0.4991 | 0.5111 | 0.9553 |
64
- | 0.1031 | 1.7462 | 3000 | 0.1480 | 0.5536 | 0.5207 | 0.5367 | 0.9576 |
65
- | 0.0912 | 2.0373 | 3500 | 0.1435 | 0.5286 | 0.5578 | 0.5428 | 0.9579 |
66
- | 0.0661 | 2.3283 | 4000 | 0.1496 | 0.5510 | 0.5698 | 0.5602 | 0.9589 |
67
- | 0.066 | 2.6193 | 4500 | 0.1502 | 0.5587 | 0.5742 | 0.5663 | 0.9594 |
68
- | 0.0646 | 2.9104 | 5000 | 0.1440 | 0.5779 | 0.5803 | 0.5791 | 0.9609 |
69
- | 0.0492 | 3.2014 | 5500 | 0.1590 | 0.5898 | 0.5656 | 0.5774 | 0.9608 |
70
- | 0.0428 | 3.4924 | 6000 | 0.1613 | 0.5819 | 0.5634 | 0.5725 | 0.9603 |
71
- | 0.0447 | 3.7835 | 6500 | 0.1602 | 0.5970 | 0.5742 | 0.5854 | 0.9615 |
72
- | 0.0407 | 4.0745 | 7000 | 0.1667 | 0.5744 | 0.5995 | 0.5867 | 0.9611 |
73
- | 0.0311 | 4.3655 | 7500 | 0.1762 | 0.5897 | 0.5754 | 0.5824 | 0.9610 |
74
- | 0.0308 | 4.6566 | 8000 | 0.1707 | 0.5928 | 0.5862 | 0.5895 | 0.9609 |
75
- | 0.0303 | 4.9476 | 8500 | 0.1717 | 0.5882 | 0.5915 | 0.5899 | 0.9610 |
76
- | 0.0217 | 5.2386 | 9000 | 0.1826 | 0.5808 | 0.6025 | 0.5915 | 0.9611 |
77
- | 0.0212 | 5.5297 | 9500 | 0.1827 | 0.5949 | 0.6006 | 0.5977 | 0.9613 |
78
- | 0.0228 | 5.8207 | 10000 | 0.1942 | 0.5760 | 0.5809 | 0.5784 | 0.9601 |
79
- | 0.02 | 6.1118 | 10500 | 0.1973 | 0.5982 | 0.5913 | 0.5947 | 0.9611 |
80
- | 0.0146 | 6.4028 | 11000 | 0.2058 | 0.5938 | 0.5871 | 0.5904 | 0.9608 |
81
- | 0.0161 | 6.6938 | 11500 | 0.2025 | 0.5973 | 0.5878 | 0.5925 | 0.9612 |
82
- | 0.0166 | 6.9849 | 12000 | 0.2053 | 0.5972 | 0.5921 | 0.5947 | 0.9613 |
83
- | 0.0115 | 7.2759 | 12500 | 0.2259 | 0.6083 | 0.5601 | 0.5832 | 0.9609 |
84
- | 0.0116 | 7.5669 | 13000 | 0.2133 | 0.5944 | 0.6029 | 0.5986 | 0.9608 |
85
- | 0.0114 | 7.8580 | 13500 | 0.2208 | 0.5883 | 0.5973 | 0.5928 | 0.9608 |
86
- | 0.0098 | 8.1490 | 14000 | 0.2363 | 0.6118 | 0.5745 | 0.5926 | 0.9611 |
87
- | 0.0084 | 8.4400 | 14500 | 0.2387 | 0.6094 | 0.5748 | 0.5916 | 0.9611 |
88
- | 0.0097 | 8.7311 | 15000 | 0.2285 | 0.5819 | 0.5998 | 0.5907 | 0.9602 |
89
- | 0.0083 | 9.0221 | 15500 | 0.2402 | 0.5992 | 0.5806 | 0.5897 | 0.9610 |
90
- | 0.0064 | 9.3132 | 16000 | 0.2456 | 0.6297 | 0.5679 | 0.5972 | 0.9617 |
91
- | 0.0068 | 9.6042 | 16500 | 0.2487 | 0.6035 | 0.5752 | 0.5890 | 0.9607 |
92
- | 0.0072 | 9.8952 | 17000 | 0.2403 | 0.5910 | 0.6009 | 0.5959 | 0.9610 |
93
- | 0.0062 | 10.1863 | 17500 | 0.2465 | 0.5981 | 0.5972 | 0.5976 | 0.9615 |
94
- | 0.0045 | 10.4773 | 18000 | 0.2562 | 0.6062 | 0.5776 | 0.5915 | 0.9611 |
95
- | 0.0055 | 10.7683 | 18500 | 0.2542 | 0.6139 | 0.5826 | 0.5978 | 0.9615 |
96
- | 0.0054 | 11.0594 | 19000 | 0.2596 | 0.6128 | 0.5807 | 0.5963 | 0.9616 |
97
- | 0.0037 | 11.3504 | 19500 | 0.2631 | 0.5872 | 0.6015 | 0.5943 | 0.9607 |
98
- | 0.0048 | 11.6414 | 20000 | 0.2613 | 0.5998 | 0.6012 | 0.6005 | 0.9615 |
99
- | 0.004 | 11.9325 | 20500 | 0.2576 | 0.6108 | 0.5892 | 0.5998 | 0.9616 |
100
- | 0.0042 | 12.2235 | 21000 | 0.2647 | 0.5943 | 0.6027 | 0.5984 | 0.9611 |
101
- | 0.0029 | 12.5146 | 21500 | 0.2773 | 0.6058 | 0.5819 | 0.5936 | 0.9613 |
102
- | 0.0037 | 12.8056 | 22000 | 0.2785 | 0.6111 | 0.5874 | 0.5990 | 0.9612 |
103
- | 0.0031 | 13.0966 | 22500 | 0.2819 | 0.6281 | 0.5790 | 0.6026 | 0.9618 |
104
- | 0.0029 | 13.3877 | 23000 | 0.2794 | 0.6002 | 0.5915 | 0.5958 | 0.9609 |
105
- | 0.0024 | 13.6787 | 23500 | 0.2842 | 0.6017 | 0.6019 | 0.6018 | 0.9615 |
106
- | 0.0034 | 13.9697 | 24000 | 0.2889 | 0.6133 | 0.5806 | 0.5965 | 0.9616 |
107
- | 0.0021 | 14.2608 | 24500 | 0.2876 | 0.6133 | 0.5803 | 0.5963 | 0.9616 |
108
- | 0.0025 | 14.5518 | 25000 | 0.2871 | 0.6130 | 0.5845 | 0.5984 | 0.9614 |
109
- | 0.0027 | 14.8428 | 25500 | 0.2921 | 0.6087 | 0.5835 | 0.5958 | 0.9613 |
110
- | 0.0021 | 15.1339 | 26000 | 0.2888 | 0.5822 | 0.5998 | 0.5909 | 0.9607 |
111
- | 0.0017 | 15.4249 | 26500 | 0.2899 | 0.6095 | 0.5911 | 0.6002 | 0.9613 |
112
- | 0.0026 | 15.7159 | 27000 | 0.2968 | 0.6065 | 0.5839 | 0.5950 | 0.9613 |
113
- | 0.002 | 16.0070 | 27500 | 0.3023 | 0.6158 | 0.5752 | 0.5949 | 0.9614 |
114
- | 0.0015 | 16.2980 | 28000 | 0.2988 | 0.6006 | 0.5954 | 0.5980 | 0.9614 |
115
- | 0.002 | 16.5891 | 28500 | 0.2983 | 0.5905 | 0.6045 | 0.5974 | 0.9611 |
116
- | 0.0017 | 16.8801 | 29000 | 0.3006 | 0.6080 | 0.5838 | 0.5956 | 0.9614 |
117
- | 0.0016 | 17.1711 | 29500 | 0.3078 | 0.5986 | 0.5921 | 0.5953 | 0.9612 |
118
- | 0.0016 | 17.4622 | 30000 | 0.3066 | 0.6084 | 0.5892 | 0.5987 | 0.9617 |
119
- | 0.0015 | 17.7532 | 30500 | 0.3153 | 0.6110 | 0.5786 | 0.5943 | 0.9617 |
120
- | 0.0015 | 18.0442 | 31000 | 0.3134 | 0.5952 | 0.5954 | 0.5953 | 0.9611 |
121
- | 0.0009 | 18.3353 | 31500 | 0.3201 | 0.6045 | 0.5904 | 0.5974 | 0.9615 |
122
- | 0.0017 | 18.6263 | 32000 | 0.3149 | 0.6095 | 0.5875 | 0.5983 | 0.9614 |
123
- | 0.0014 | 18.9173 | 32500 | 0.3227 | 0.6152 | 0.5804 | 0.5973 | 0.9617 |
124
 
125
 
126
  ### Framework versions
 
1
  ---
 
2
  library_name: transformers
3
  license: mit
4
+ base_model: microsoft/mdeberta-v3-base
5
+ tags:
6
+ - generated_from_trainer
7
  metrics:
8
  - precision
9
  - recall
10
  - f1
11
  - accuracy
 
 
12
  model-index:
13
  - name: scenario-non-kd-scr-ner-half-mdeberta_data-univner_full44
14
  results: []
 
21
 
22
  This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.3028
25
+ - Precision: 0.6277
26
+ - Recall: 0.5869
27
+ - F1: 0.6066
28
+ - Accuracy: 0.9615
29
 
30
  ## Model description
31
 
 
56
 
57
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
  |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.36 | 0.2910 | 500 | 0.2872 | 0.2875 | 0.1173 | 0.1666 | 0.9284 |
60
+ | 0.2389 | 0.5821 | 1000 | 0.2086 | 0.3476 | 0.2561 | 0.2949 | 0.9388 |
61
+ | 0.1727 | 0.8731 | 1500 | 0.1810 | 0.4363 | 0.3748 | 0.4033 | 0.9465 |
62
+ | 0.1338 | 1.1641 | 2000 | 0.1644 | 0.4626 | 0.4675 | 0.4650 | 0.9514 |
63
+ | 0.1122 | 1.4552 | 2500 | 0.1560 | 0.4983 | 0.5063 | 0.5023 | 0.9538 |
64
+ | 0.1033 | 1.7462 | 3000 | 0.1504 | 0.5354 | 0.5128 | 0.5238 | 0.9564 |
65
+ | 0.0919 | 2.0373 | 3500 | 0.1475 | 0.5073 | 0.5452 | 0.5256 | 0.9558 |
66
+ | 0.0665 | 2.3283 | 4000 | 0.1547 | 0.5536 | 0.5578 | 0.5557 | 0.9583 |
67
+ | 0.066 | 2.6193 | 4500 | 0.1513 | 0.5345 | 0.5760 | 0.5545 | 0.9581 |
68
+ | 0.0642 | 2.9104 | 5000 | 0.1489 | 0.5750 | 0.5683 | 0.5716 | 0.9605 |
69
+ | 0.0495 | 3.2014 | 5500 | 0.1597 | 0.5769 | 0.5711 | 0.5740 | 0.9600 |
70
+ | 0.0437 | 3.4924 | 6000 | 0.1643 | 0.5848 | 0.5680 | 0.5763 | 0.9603 |
71
+ | 0.0444 | 3.7835 | 6500 | 0.1615 | 0.5884 | 0.5898 | 0.5891 | 0.9607 |
72
+ | 0.0409 | 4.0745 | 7000 | 0.1723 | 0.5869 | 0.5761 | 0.5815 | 0.9606 |
73
+ | 0.0313 | 4.3655 | 7500 | 0.1740 | 0.5871 | 0.5930 | 0.5900 | 0.9606 |
74
+ | 0.032 | 4.6566 | 8000 | 0.1682 | 0.5911 | 0.6031 | 0.5971 | 0.9611 |
75
+ | 0.0304 | 4.9476 | 8500 | 0.1771 | 0.6070 | 0.5783 | 0.5923 | 0.9613 |
76
+ | 0.0228 | 5.2386 | 9000 | 0.1843 | 0.5817 | 0.6045 | 0.5929 | 0.9608 |
77
+ | 0.0216 | 5.5297 | 9500 | 0.1841 | 0.5938 | 0.6142 | 0.6038 | 0.9609 |
78
+ | 0.0232 | 5.8207 | 10000 | 0.1957 | 0.5816 | 0.5998 | 0.5906 | 0.9600 |
79
+ | 0.0201 | 6.1118 | 10500 | 0.1982 | 0.6049 | 0.5963 | 0.6006 | 0.9611 |
80
+ | 0.0153 | 6.4028 | 11000 | 0.2040 | 0.5919 | 0.6057 | 0.5987 | 0.9602 |
81
+ | 0.0165 | 6.6938 | 11500 | 0.2039 | 0.6000 | 0.5988 | 0.5994 | 0.9609 |
82
+ | 0.0165 | 6.9849 | 12000 | 0.2076 | 0.5963 | 0.5913 | 0.5938 | 0.9606 |
83
+ | 0.0121 | 7.2759 | 12500 | 0.2178 | 0.6015 | 0.5833 | 0.5923 | 0.9604 |
84
+ | 0.012 | 7.5669 | 13000 | 0.2186 | 0.6206 | 0.5902 | 0.6050 | 0.9613 |
85
+ | 0.0126 | 7.8580 | 13500 | 0.2218 | 0.5882 | 0.6191 | 0.6033 | 0.9600 |
86
+ | 0.0098 | 8.1490 | 14000 | 0.2296 | 0.6164 | 0.5911 | 0.6035 | 0.9617 |
87
+ | 0.0091 | 8.4400 | 14500 | 0.2332 | 0.5986 | 0.5976 | 0.5981 | 0.9607 |
88
+ | 0.0097 | 8.7311 | 15000 | 0.2322 | 0.6053 | 0.5996 | 0.6024 | 0.9613 |
89
+ | 0.0089 | 9.0221 | 15500 | 0.2355 | 0.6174 | 0.6034 | 0.6103 | 0.9612 |
90
+ | 0.0064 | 9.3132 | 16000 | 0.2440 | 0.6306 | 0.5835 | 0.6061 | 0.9614 |
91
+ | 0.0071 | 9.6042 | 16500 | 0.2451 | 0.6220 | 0.5761 | 0.5982 | 0.9609 |
92
+ | 0.0073 | 9.8952 | 17000 | 0.2461 | 0.6203 | 0.5990 | 0.6095 | 0.9616 |
93
+ | 0.0064 | 10.1863 | 17500 | 0.2506 | 0.6213 | 0.5900 | 0.6052 | 0.9615 |
94
+ | 0.005 | 10.4773 | 18000 | 0.2547 | 0.6226 | 0.5970 | 0.6096 | 0.9617 |
95
+ | 0.0058 | 10.7683 | 18500 | 0.2553 | 0.6374 | 0.5897 | 0.6126 | 0.9620 |
96
+ | 0.0054 | 11.0594 | 19000 | 0.2624 | 0.6232 | 0.5840 | 0.6030 | 0.9617 |
97
+ | 0.0044 | 11.3504 | 19500 | 0.2655 | 0.6262 | 0.5946 | 0.6100 | 0.9620 |
98
+ | 0.0048 | 11.6414 | 20000 | 0.2654 | 0.6154 | 0.5989 | 0.6070 | 0.9616 |
99
+ | 0.0042 | 11.9325 | 20500 | 0.2724 | 0.6306 | 0.5806 | 0.6046 | 0.9616 |
100
+ | 0.004 | 12.2235 | 21000 | 0.2707 | 0.6052 | 0.5920 | 0.5985 | 0.9607 |
101
+ | 0.0035 | 12.5146 | 21500 | 0.2714 | 0.5962 | 0.5986 | 0.5974 | 0.9607 |
102
+ | 0.0041 | 12.8056 | 22000 | 0.2755 | 0.6263 | 0.5858 | 0.6053 | 0.9616 |
103
+ | 0.0035 | 13.0966 | 22500 | 0.2842 | 0.6350 | 0.5814 | 0.6071 | 0.9614 |
104
+ | 0.0033 | 13.3877 | 23000 | 0.2763 | 0.6317 | 0.5868 | 0.6084 | 0.9614 |
105
+ | 0.0028 | 13.6787 | 23500 | 0.2831 | 0.6141 | 0.5976 | 0.6057 | 0.9616 |
106
+ | 0.0031 | 13.9697 | 24000 | 0.2797 | 0.6141 | 0.6064 | 0.6102 | 0.9614 |
107
+ | 0.0024 | 14.2608 | 24500 | 0.2873 | 0.5980 | 0.6038 | 0.6009 | 0.9611 |
108
+ | 0.0025 | 14.5518 | 25000 | 0.2913 | 0.6055 | 0.5980 | 0.6017 | 0.9612 |
109
+ | 0.003 | 14.8428 | 25500 | 0.2885 | 0.6208 | 0.5843 | 0.6020 | 0.9615 |
110
+ | 0.0023 | 15.1339 | 26000 | 0.2923 | 0.6255 | 0.5849 | 0.6045 | 0.9618 |
111
+ | 0.0019 | 15.4249 | 26500 | 0.2875 | 0.6221 | 0.6015 | 0.6116 | 0.9619 |
112
+ | 0.0027 | 15.7159 | 27000 | 0.2898 | 0.6241 | 0.5967 | 0.6101 | 0.9619 |
113
+ | 0.0024 | 16.0070 | 27500 | 0.2943 | 0.6146 | 0.5895 | 0.6018 | 0.9612 |
114
+ | 0.0016 | 16.2980 | 28000 | 0.2996 | 0.6199 | 0.5928 | 0.6060 | 0.9614 |
115
+ | 0.0022 | 16.5891 | 28500 | 0.3028 | 0.6277 | 0.5869 | 0.6066 | 0.9615 |
 
 
 
 
 
 
 
 
116
 
117
 
118
  ### Framework versions
eval_result_ner.json CHANGED
@@ -1 +1 @@
1
- {"ceb_gja": {"precision": 0.26, "recall": 0.5306122448979592, "f1": 0.348993288590604, "accuracy": 0.9196911196911197}, "en_pud": {"precision": 0.493491124260355, "recall": 0.38790697674418606, "f1": 0.434375, "accuracy": 0.9478655081224027}, "de_pud": {"precision": 0.128099173553719, "recall": 0.2685274302213667, "f1": 0.1734535281317998, "accuracy": 0.8564530495522947}, "pt_pud": {"precision": 0.554679802955665, "recall": 0.5122838944494995, "f1": 0.532639545884579, "accuracy": 0.9577904045798266}, "ru_pud": {"precision": 0.01598173515981735, "recall": 0.04054054054054054, "f1": 0.02292576419213974, "accuracy": 0.7532937225523121}, "sv_pud": {"precision": 0.5259938837920489, "recall": 0.33430515063168126, "f1": 0.4087938205585264, "accuracy": 0.9465296707905221}, "tl_trg": {"precision": 0.24193548387096775, "recall": 0.6521739130434783, "f1": 0.35294117647058826, "accuracy": 0.9277929155313351}, "tl_ugnayan": {"precision": 0.06666666666666667, "recall": 0.15151515151515152, "f1": 0.09259259259259259, "accuracy": 0.8997265268915223}, "zh_gsd": {"precision": 0.5648535564853556, "recall": 0.5280312907431551, "f1": 0.545822102425876, "accuracy": 0.9410589410589411}, "zh_gsdsimp": {"precision": 0.5839017735334243, "recall": 0.5609436435124509, "f1": 0.5721925133689839, "accuracy": 0.9446386946386947}, "hr_set": {"precision": 0.7600585223116313, "recall": 0.7405559515324305, "f1": 0.7501805054151623, "accuracy": 0.9703627370156637}, "da_ddt": {"precision": 0.6727748691099477, "recall": 0.5749440715883669, "f1": 0.6200241254523522, "accuracy": 0.9720642522198942}, "en_ewt": {"precision": 0.6070686070686071, "recall": 0.5367647058823529, "f1": 0.5697560975609756, "accuracy": 0.9593576921544408}, "pt_bosque": {"precision": 0.6539130434782608, "recall": 0.6189300411522634, "f1": 0.6359408033826638, "accuracy": 0.9660194174757282}, "sr_set": {"precision": 0.7801672640382318, "recall": 0.7709563164108618, "f1": 0.7755344418052256, "accuracy": 0.9667279572716925}, "sk_snk": {"precision": 0.39080459770114945, "recall": 0.26010928961748636, "f1": 0.3123359580052494, "accuracy": 0.914572864321608}, "sv_talbanken": {"precision": 0.7088607594936709, "recall": 0.5714285714285714, "f1": 0.632768361581921, "accuracy": 0.993963782696177}}
 
1
+ {"ceb_gja": {"precision": 0.25263157894736843, "recall": 0.4897959183673469, "f1": 0.3333333333333333, "accuracy": 0.9204633204633205}, "en_pud": {"precision": 0.5005807200929152, "recall": 0.40093023255813953, "f1": 0.4452479338842975, "accuracy": 0.9482905175670571}, "de_pud": {"precision": 0.15625, "recall": 0.30317613089509143, "f1": 0.20621931260229132, "accuracy": 0.867751160283156}, "pt_pud": {"precision": 0.5947265625, "recall": 0.554140127388535, "f1": 0.5737164390014131, "accuracy": 0.960225573546375}, "ru_pud": {"precision": 0.019720419370943584, "recall": 0.07625482625482626, "f1": 0.031336771122570405, "accuracy": 0.6247997933350555}, "sv_pud": {"precision": 0.5223880597014925, "recall": 0.30612244897959184, "f1": 0.38602941176470584, "accuracy": 0.9446424827007759}, "tl_trg": {"precision": 0.16883116883116883, "recall": 0.5652173913043478, "f1": 0.25999999999999995, "accuracy": 0.896457765667575}, "tl_ugnayan": {"precision": 0.04819277108433735, "recall": 0.12121212121212122, "f1": 0.06896551724137931, "accuracy": 0.8933454876937101}, "zh_gsd": {"precision": 0.5743801652892562, "recall": 0.5436766623207301, "f1": 0.5586068318821165, "accuracy": 0.9411421911421911}, "zh_gsdsimp": {"precision": 0.5818965517241379, "recall": 0.5307994757536042, "f1": 0.5551747772446882, "accuracy": 0.9408924408924408}, "hr_set": {"precision": 0.7829691032403918, "recall": 0.7405559515324305, "f1": 0.7611721611721611, "accuracy": 0.9725474031327288}, "da_ddt": {"precision": 0.7002724795640327, "recall": 0.5749440715883669, "f1": 0.6314496314496315, "accuracy": 0.9725631048588247}, "en_ewt": {"precision": 0.648590021691974, "recall": 0.5496323529411765, "f1": 0.5950248756218905, "accuracy": 0.9619077977447503}, "pt_bosque": {"precision": 0.6499148211243612, "recall": 0.6279835390946502, "f1": 0.6387609878610296, "accuracy": 0.9667077235183307}, "sr_set": {"precision": 0.7949640287769785, "recall": 0.7827626918536009, "f1": 0.7888161808447354, "accuracy": 0.9697049295158042}, "sk_snk": {"precision": 0.3938356164383562, "recall": 0.25136612021857924, "f1": 0.3068712474983323, "accuracy": 0.9152795226130653}, "sv_talbanken": {"precision": 0.6878980891719745, "recall": 0.5510204081632653, "f1": 0.6118980169971672, "accuracy": 0.9936202581341709}}
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:44344290029bdd862c294ff09e558ab6f3207276283256111bd7e74ab26bfbb9
3
  size 428939068
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f362fbddd893cbafd504c0e6288835b64749bd8255a63a8d04a485b553bba50
3
  size 428939068
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3e8bd72e6d5081aa3461c60ff89546899aaf2ea31dee6c5683937c951e13801b
3
  size 5304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2139262c6153d3b2e1092bc3968591c4691f81105fafc995dcd06d99f50f000
3
  size 5304