haryoaw commited on
Commit
4cf3bea
1 Parent(s): 4555058

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +87 -0
  2. config.json +53 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-non-kd-po-ner-full-mdeberta_data-univner_half66
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-non-kd-po-ner-full-mdeberta_data-univner_half66
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1199
25
+ - Precision: 0.8560
26
+ - Recall: 0.8660
27
+ - F1: 0.8609
28
+ - Accuracy: 0.9848
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 32
50
+ - seed: 66
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 30
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.0064 | 0.5828 | 500 | 0.0946 | 0.8530 | 0.8696 | 0.8612 | 0.9847 |
60
+ | 0.0072 | 1.1655 | 1000 | 0.0935 | 0.8563 | 0.8531 | 0.8547 | 0.9844 |
61
+ | 0.0058 | 1.7483 | 1500 | 0.0977 | 0.8394 | 0.8530 | 0.8461 | 0.9836 |
62
+ | 0.005 | 2.3310 | 2000 | 0.1050 | 0.8492 | 0.8609 | 0.8550 | 0.9840 |
63
+ | 0.0054 | 2.9138 | 2500 | 0.1081 | 0.8503 | 0.8422 | 0.8462 | 0.9834 |
64
+ | 0.0043 | 3.4965 | 3000 | 0.1210 | 0.8273 | 0.8775 | 0.8516 | 0.9830 |
65
+ | 0.0049 | 4.0793 | 3500 | 0.1118 | 0.8413 | 0.8590 | 0.8501 | 0.9836 |
66
+ | 0.0035 | 4.6620 | 4000 | 0.1137 | 0.8465 | 0.8647 | 0.8555 | 0.9837 |
67
+ | 0.0031 | 5.2448 | 4500 | 0.1150 | 0.8430 | 0.8551 | 0.8490 | 0.9832 |
68
+ | 0.0027 | 5.8275 | 5000 | 0.1169 | 0.8401 | 0.8590 | 0.8495 | 0.9836 |
69
+ | 0.0027 | 6.4103 | 5500 | 0.1147 | 0.8517 | 0.8678 | 0.8597 | 0.9847 |
70
+ | 0.0034 | 6.9930 | 6000 | 0.1163 | 0.8457 | 0.8651 | 0.8553 | 0.9842 |
71
+ | 0.0024 | 7.5758 | 6500 | 0.1133 | 0.8523 | 0.8652 | 0.8587 | 0.9846 |
72
+ | 0.0031 | 8.1585 | 7000 | 0.1170 | 0.8399 | 0.8577 | 0.8487 | 0.9834 |
73
+ | 0.0019 | 8.7413 | 7500 | 0.1243 | 0.8413 | 0.8673 | 0.8541 | 0.9840 |
74
+ | 0.0019 | 9.3240 | 8000 | 0.1230 | 0.8393 | 0.8726 | 0.8556 | 0.9841 |
75
+ | 0.002 | 9.9068 | 8500 | 0.1218 | 0.8444 | 0.8549 | 0.8496 | 0.9839 |
76
+ | 0.002 | 10.4895 | 9000 | 0.1205 | 0.8518 | 0.8651 | 0.8584 | 0.9846 |
77
+ | 0.0017 | 11.0723 | 9500 | 0.1184 | 0.8643 | 0.8553 | 0.8598 | 0.9846 |
78
+ | 0.0014 | 11.6550 | 10000 | 0.1316 | 0.8363 | 0.8717 | 0.8536 | 0.9838 |
79
+ | 0.0016 | 12.2378 | 10500 | 0.1199 | 0.8560 | 0.8660 | 0.8609 | 0.9848 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.44.2
85
+ - Pytorch 2.1.1+cu121
86
+ - Datasets 2.14.5
87
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "DebertaV2ForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6"
18
+ },
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 3072,
21
+ "label2id": {
22
+ "LABEL_0": 0,
23
+ "LABEL_1": 1,
24
+ "LABEL_2": 2,
25
+ "LABEL_3": 3,
26
+ "LABEL_4": 4,
27
+ "LABEL_5": 5,
28
+ "LABEL_6": 6
29
+ },
30
+ "layer_norm_eps": 1e-07,
31
+ "max_position_embeddings": 512,
32
+ "max_relative_positions": -1,
33
+ "model_type": "deberta-v2",
34
+ "norm_rel_ebd": "layer_norm",
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 12,
37
+ "pad_token_id": 0,
38
+ "pooler_dropout": 0,
39
+ "pooler_hidden_act": "gelu",
40
+ "pooler_hidden_size": 768,
41
+ "pos_att_type": [
42
+ "p2c",
43
+ "c2p"
44
+ ],
45
+ "position_biased_input": false,
46
+ "position_buckets": 256,
47
+ "relative_attention": true,
48
+ "share_att_key": true,
49
+ "torch_dtype": "float32",
50
+ "transformers_version": "4.44.2",
51
+ "type_vocab_size": 0,
52
+ "vocab_size": 251000
53
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.92, "recall": 0.9387755102040817, "f1": 0.9292929292929293, "accuracy": 0.9945945945945946}, "en_pud": {"precision": 0.8208955223880597, "recall": 0.8186046511627907, "f1": 0.8197484862598975, "accuracy": 0.9821023800528901}, "de_pud": {"precision": 0.8106343283582089, "recall": 0.836381135707411, "f1": 0.8233064898152536, "accuracy": 0.9807791477192818}, "pt_pud": {"precision": 0.8678057553956835, "recall": 0.8780709736123748, "f1": 0.8729081863410221, "accuracy": 0.9870124321784082}, "ru_pud": {"precision": 0.7212669683257918, "recall": 0.7693050193050193, "f1": 0.7445119103222794, "accuracy": 0.9737535520537329}, "sv_pud": {"precision": 0.8760724499523356, "recall": 0.8931000971817298, "f1": 0.8845043310875842, "accuracy": 0.9881002306563221}, "tl_trg": {"precision": 0.9166666666666666, "recall": 0.9565217391304348, "f1": 0.9361702127659574, "accuracy": 0.9959128065395095}, "tl_ugnayan": {"precision": 0.6923076923076923, "recall": 0.8181818181818182, "f1": 0.7500000000000001, "accuracy": 0.9799453053783045}, "zh_gsd": {"precision": 0.8637532133676092, "recall": 0.8761408083441982, "f1": 0.8699029126213592, "accuracy": 0.9816017316017316}, "zh_gsdsimp": {"precision": 0.8795811518324608, "recall": 0.8807339449541285, "f1": 0.8801571709233792, "accuracy": 0.9816849816849816}, "hr_set": {"precision": 0.9084022038567493, "recall": 0.940128296507484, "f1": 0.9239929947460596, "accuracy": 0.9907254740313273}, "da_ddt": {"precision": 0.8811188811188811, "recall": 0.8456375838926175, "f1": 0.863013698630137, "accuracy": 0.9890252419435299}, "en_ewt": {"precision": 0.8257777777777778, "recall": 0.8538602941176471, "f1": 0.8395842747401717, "accuracy": 0.9828664780651074}, "pt_bosque": {"precision": 0.8714893617021277, "recall": 0.842798353909465, "f1": 0.8569037656903765, "accuracy": 0.9862338791479496}, "sr_set": {"precision": 0.9471210340775558, "recall": 0.9515938606847698, "f1": 0.9493521790341578, "accuracy": 0.9908064092461255}, "sk_snk": {"precision": 0.8280739934711643, "recall": 0.8316939890710382, "f1": 0.8298800436205016, "accuracy": 0.9757380653266332}, "sv_talbanken": {"precision": 0.7763713080168776, "recall": 0.9387755102040817, "f1": 0.8498845265588915, "accuracy": 0.9969082789419443}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db88cb86a311aae6ec60c1198104225cd05ce1d1411d5d33d511a042c22e0100
3
+ size 1112921036
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d51bd005480e902064d9aa6698e9beee40a5a78534f9e0f2701ac0d38d2e52c8
3
+ size 5304