haryoaw commited on
Commit
536c6cd
1 Parent(s): abfb10f

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +85 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. model.safetensors +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: scenario-kd-scr-ner-full-xlmr_data-univner_half55
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # scenario-kd-scr-ner-full-xlmr_data-univner_half55
21
+
22
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 239.5321
25
+ - Precision: 0.3634
26
+ - Recall: 0.2698
27
+ - F1: 0.3097
28
+ - Accuracy: 0.9371
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 32
50
+ - seed: 55
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 443.8944 | 0.5828 | 500 | 368.5827 | 1.0 | 0.0003 | 0.0006 | 0.9241 |
62
+ | 344.6514 | 1.1655 | 1000 | 338.3108 | 0.4198 | 0.0238 | 0.0451 | 0.9249 |
63
+ | 317.7911 | 1.7483 | 1500 | 323.1518 | 0.3373 | 0.0781 | 0.1268 | 0.9266 |
64
+ | 295.7283 | 2.3310 | 2000 | 304.1432 | 0.3776 | 0.0879 | 0.1426 | 0.9282 |
65
+ | 279.1692 | 2.9138 | 2500 | 298.1003 | 0.3030 | 0.1619 | 0.2110 | 0.9301 |
66
+ | 265.46 | 3.4965 | 3000 | 283.4411 | 0.3299 | 0.1756 | 0.2292 | 0.9326 |
67
+ | 253.3522 | 4.0793 | 3500 | 276.4803 | 0.3419 | 0.1991 | 0.2517 | 0.9335 |
68
+ | 243.6295 | 4.6620 | 4000 | 268.1132 | 0.3623 | 0.2144 | 0.2694 | 0.9355 |
69
+ | 235.7751 | 5.2448 | 4500 | 260.5050 | 0.3808 | 0.1952 | 0.2581 | 0.9358 |
70
+ | 229.31 | 5.8275 | 5000 | 255.4243 | 0.3822 | 0.2135 | 0.2740 | 0.9358 |
71
+ | 222.7415 | 6.4103 | 5500 | 253.6783 | 0.3210 | 0.2489 | 0.2804 | 0.9345 |
72
+ | 218.7321 | 6.9930 | 6000 | 250.1186 | 0.3372 | 0.2663 | 0.2976 | 0.9354 |
73
+ | 213.8638 | 7.5758 | 6500 | 245.7943 | 0.3533 | 0.2519 | 0.2941 | 0.9362 |
74
+ | 211.1232 | 8.1585 | 7000 | 241.6974 | 0.3942 | 0.2450 | 0.3022 | 0.9382 |
75
+ | 208.2374 | 8.7413 | 7500 | 241.2330 | 0.3854 | 0.2630 | 0.3127 | 0.9375 |
76
+ | 206.2932 | 9.3240 | 8000 | 240.2229 | 0.3769 | 0.2672 | 0.3127 | 0.9373 |
77
+ | 205.5458 | 9.9068 | 8500 | 239.5321 | 0.3634 | 0.2698 | 0.3097 | 0.9371 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.44.2
83
+ - Pytorch 2.1.1+cu121
84
+ - Datasets 2.14.5
85
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 6,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.44.2",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.5172413793103449, "recall": 0.30612244897959184, "f1": 0.38461538461538464, "accuracy": 0.9598455598455599}, "en_pud": {"precision": 0.35255570117955437, "recall": 0.2502325581395349, "f1": 0.2927094668117519, "accuracy": 0.9383264072534945}, "de_pud": {"precision": 0.12743506493506493, "recall": 0.15110683349374399, "f1": 0.13826508146191105, "accuracy": 0.8964417983216915}, "pt_pud": {"precision": 0.2789598108747045, "recall": 0.10737033666969972, "f1": 0.15505913272010513, "accuracy": 0.9329260477634895}, "ru_pud": {"precision": 0.024163568773234202, "recall": 0.012548262548262547, "f1": 0.01651842439644219, "accuracy": 0.893050891242573}, "sv_pud": {"precision": 0.23941068139963168, "recall": 0.12633624878522837, "f1": 0.1653944020356234, "accuracy": 0.9243027888446215}, "tl_trg": {"precision": 0.3, "recall": 0.2608695652173913, "f1": 0.27906976744186046, "accuracy": 0.9618528610354223}, "tl_ugnayan": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9361896080218779}, "zh_gsd": {"precision": 0.3411764705882353, "recall": 0.18904823989569752, "f1": 0.24328859060402686, "accuracy": 0.9061771561771562}, "zh_gsdsimp": {"precision": 0.3480392156862745, "recall": 0.18610747051114024, "f1": 0.2425277540563621, "accuracy": 0.908008658008658}, "hr_set": {"precision": 0.5507246376811594, "recall": 0.5958660014255167, "f1": 0.5724067100308112, "accuracy": 0.9563066776586975}, "da_ddt": {"precision": 0.2681564245810056, "recall": 0.10738255033557047, "f1": 0.15335463258785942, "accuracy": 0.9395390601616282}, "en_ewt": {"precision": 0.4677777777777778, "recall": 0.3869485294117647, "f1": 0.4235412474849094, "accuracy": 0.9509503127863889}, "pt_bosque": {"precision": 0.1973392461197339, "recall": 0.07325102880658436, "f1": 0.10684273709483794, "accuracy": 0.9245761483842921}, "sr_set": {"precision": 0.5396270396270396, "recall": 0.5466351829988194, "f1": 0.543108504398827, "accuracy": 0.9387093949741704}, "sk_snk": {"precision": 0.17154811715481172, "recall": 0.08961748633879782, "f1": 0.11773151471643936, "accuracy": 0.8871702261306532}, "sv_talbanken": {"precision": 0.11979166666666667, "recall": 0.11734693877551021, "f1": 0.11855670103092784, "accuracy": 0.9813024488393778}}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b65073d7d34211e0691874aaecdea21283b413ed8249b721c60253c70eee119f
3
+ size 939737140
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ac1b3f2f31ca800467c1e7944c686fcaf3762734df6031de411f4599d9667be
3
+ size 5304