haryoaw commited on
Commit
f678756
·
verified ·
1 Parent(s): 369c7d3

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +74 -0
  2. config.json +46 -0
  3. eval_result_ner.json +1 -0
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: haryoaw/scenario-TCR-NER_data-univner_half
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: scenario-kd-scr-ner-full-xlmr-halfen_data-univner_en66
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # scenario-kd-scr-ner-full-xlmr-halfen_data-univner_en66
20
+
21
+ This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_half](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_half) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 250.6721
24
+ - Precision: 0.4368
25
+ - Recall: 0.2754
26
+ - F1: 0.3378
27
+ - Accuracy: 0.9532
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 32
49
+ - seed: 66
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 32
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 10
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
60
+ | 426.5331 | 1.28 | 500 | 343.1131 | 0.4717 | 0.0259 | 0.0491 | 0.9413 |
61
+ | 317.8317 | 2.55 | 1000 | 306.4857 | 0.3815 | 0.1066 | 0.1667 | 0.9449 |
62
+ | 288.4479 | 3.83 | 1500 | 285.8158 | 0.4429 | 0.1284 | 0.1990 | 0.9461 |
63
+ | 270.6268 | 5.1 | 2000 | 271.5317 | 0.3921 | 0.2050 | 0.2692 | 0.9494 |
64
+ | 257.3109 | 6.38 | 2500 | 260.7265 | 0.3853 | 0.2381 | 0.2943 | 0.9517 |
65
+ | 248.4864 | 7.65 | 3000 | 253.9278 | 0.3950 | 0.2940 | 0.3371 | 0.9527 |
66
+ | 242.8456 | 8.93 | 3500 | 250.6721 | 0.4368 | 0.2754 | 0.3378 | 0.9532 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.33.3
72
+ - Pytorch 2.1.1+cu121
73
+ - Datasets 2.14.5
74
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_half",
3
+ "architectures": [
4
+ "XLMRobertaForTokenClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6"
21
+ },
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "label2id": {
25
+ "LABEL_0": 0,
26
+ "LABEL_1": 1,
27
+ "LABEL_2": 2,
28
+ "LABEL_3": 3,
29
+ "LABEL_4": 4,
30
+ "LABEL_5": 5,
31
+ "LABEL_6": 6
32
+ },
33
+ "layer_norm_eps": 1e-05,
34
+ "max_position_embeddings": 514,
35
+ "model_type": "xlm-roberta",
36
+ "num_attention_heads": 12,
37
+ "num_hidden_layers": 6,
38
+ "output_past": true,
39
+ "pad_token_id": 1,
40
+ "position_embedding_type": "absolute",
41
+ "torch_dtype": "float32",
42
+ "transformers_version": "4.33.3",
43
+ "type_vocab_size": 1,
44
+ "use_cache": true,
45
+ "vocab_size": 250002
46
+ }
eval_result_ner.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ceb_gja": {"precision": 0.3191489361702128, "recall": 0.30612244897959184, "f1": 0.3125, "accuracy": 0.9451737451737452}, "en_pud": {"precision": 0.34501845018450183, "recall": 0.173953488372093, "f1": 0.2312925170068027, "accuracy": 0.935681904042312}, "de_pud": {"precision": 0.1561938958707361, "recall": 0.08373435996150144, "f1": 0.10902255639097745, "accuracy": 0.9213820261591111}, "pt_pud": {"precision": 0.271356783919598, "recall": 0.04913557779799818, "f1": 0.08320493066255777, "accuracy": 0.9331396590763447}, "ru_pud": {"precision": 0.046511627906976744, "recall": 0.0019305019305019305, "f1": 0.0037071362372567192, "accuracy": 0.9222939808834927}, "sv_pud": {"precision": 0.28879310344827586, "recall": 0.06511175898931001, "f1": 0.10626486915146709, "accuracy": 0.9270287271964772}, "tl_trg": {"precision": 0.3, "recall": 0.391304347826087, "f1": 0.33962264150943394, "accuracy": 0.946866485013624}, "tl_ugnayan": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.9443938012762079}, "zh_gsd": {"precision": 0.2, "recall": 0.002607561929595828, "f1": 0.005148005148005148, "accuracy": 0.8827006327006327}, "zh_gsdsimp": {"precision": 0.0, "recall": 0.0, "f1": 0.0, "accuracy": 0.883033633033633}, "hr_set": {"precision": 0.14622641509433962, "recall": 0.022095509622238062, "f1": 0.03839009287925697, "accuracy": 0.9139323990107172}, "da_ddt": {"precision": 0.21238938053097345, "recall": 0.053691275167785234, "f1": 0.08571428571428573, "accuracy": 0.9365459443280455}, "en_ewt": {"precision": 0.4687022900763359, "recall": 0.2821691176470588, "f1": 0.35226620768789446, "accuracy": 0.9482806709965335}, "pt_bosque": {"precision": 0.18303571428571427, "recall": 0.03374485596707819, "f1": 0.05698401667824879, "accuracy": 0.9232357629329083}, "sr_set": {"precision": 0.09090909090909091, "recall": 0.009445100354191263, "f1": 0.017112299465240642, "accuracy": 0.8927414412047981}, "sk_snk": {"precision": 0.20093457943925233, "recall": 0.046994535519125684, "f1": 0.07617360496014171, "accuracy": 0.8885050251256281}, "sv_talbanken": {"precision": 0.14184397163120568, "recall": 0.10204081632653061, "f1": 0.11869436201780416, "accuracy": 0.9839034205231388}}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70e59418b10636e37f48616986ad14d5a450ea33d0c06d0785fa6cb3ece76c38
3
+ size 939760294
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c0e47657862944a57e76da62acfc0e88e816bc193a752c941ddf71caf5780e4
3
+ size 4600