Initial Commit
Browse files- README.md +102 -0
- config.json +53 -0
- eval_result_ner.json +1 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: haryoaw/scenario-TCR-NER_data-univner_full
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: scenario-kd-po-ner-full-mdeberta_data-univner_full55
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# scenario-kd-po-ner-full-mdeberta_data-univner_full55
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [haryoaw/scenario-TCR-NER_data-univner_full](https://huggingface.co/haryoaw/scenario-TCR-NER_data-univner_full) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.2447
|
25 |
+
- Precision: 0.8164
|
26 |
+
- Recall: 0.8230
|
27 |
+
- F1: 0.8197
|
28 |
+
- Accuracy: 0.9815
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 8
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 55
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 32
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 10
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
+
|:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| 1.1833 | 0.2911 | 500 | 0.6892 | 0.5129 | 0.4802 | 0.4960 | 0.9543 |
|
62 |
+
| 0.5847 | 0.5822 | 1000 | 0.4874 | 0.6855 | 0.6350 | 0.6593 | 0.9673 |
|
63 |
+
| 0.4508 | 0.8732 | 1500 | 0.4097 | 0.7055 | 0.7560 | 0.7299 | 0.9734 |
|
64 |
+
| 0.373 | 1.1643 | 2000 | 0.3775 | 0.7500 | 0.7422 | 0.7460 | 0.9753 |
|
65 |
+
| 0.3179 | 1.4554 | 2500 | 0.3419 | 0.7546 | 0.7756 | 0.7650 | 0.9768 |
|
66 |
+
| 0.2999 | 1.7465 | 3000 | 0.3334 | 0.7713 | 0.8019 | 0.7863 | 0.9785 |
|
67 |
+
| 0.2786 | 2.0375 | 3500 | 0.3187 | 0.7838 | 0.7883 | 0.7861 | 0.9789 |
|
68 |
+
| 0.2448 | 2.3286 | 4000 | 0.3204 | 0.7932 | 0.7777 | 0.7854 | 0.9787 |
|
69 |
+
| 0.2332 | 2.6197 | 4500 | 0.3065 | 0.8004 | 0.7833 | 0.7917 | 0.9790 |
|
70 |
+
| 0.2267 | 2.9108 | 5000 | 0.2972 | 0.8025 | 0.8029 | 0.8027 | 0.9799 |
|
71 |
+
| 0.2114 | 3.2019 | 5500 | 0.2948 | 0.7903 | 0.8046 | 0.7974 | 0.9794 |
|
72 |
+
| 0.2006 | 3.4929 | 6000 | 0.2877 | 0.8131 | 0.8045 | 0.8088 | 0.9804 |
|
73 |
+
| 0.1941 | 3.7840 | 6500 | 0.2819 | 0.8007 | 0.8018 | 0.8012 | 0.9801 |
|
74 |
+
| 0.1885 | 4.0751 | 7000 | 0.2787 | 0.8008 | 0.8058 | 0.8033 | 0.9797 |
|
75 |
+
| 0.1798 | 4.3662 | 7500 | 0.2821 | 0.8071 | 0.8061 | 0.8066 | 0.9800 |
|
76 |
+
| 0.1768 | 4.6573 | 8000 | 0.2750 | 0.8046 | 0.8061 | 0.8053 | 0.9802 |
|
77 |
+
| 0.1742 | 4.9483 | 8500 | 0.2706 | 0.7992 | 0.8231 | 0.8110 | 0.9804 |
|
78 |
+
| 0.1651 | 5.2394 | 9000 | 0.2671 | 0.8192 | 0.8130 | 0.8161 | 0.9808 |
|
79 |
+
| 0.1619 | 5.5305 | 9500 | 0.2680 | 0.8168 | 0.8097 | 0.8132 | 0.9807 |
|
80 |
+
| 0.1616 | 5.8216 | 10000 | 0.2611 | 0.8121 | 0.8188 | 0.8154 | 0.9808 |
|
81 |
+
| 0.1604 | 6.1126 | 10500 | 0.2614 | 0.8165 | 0.8074 | 0.8119 | 0.9808 |
|
82 |
+
| 0.1542 | 6.4037 | 11000 | 0.2569 | 0.8110 | 0.8247 | 0.8178 | 0.9810 |
|
83 |
+
| 0.1534 | 6.6948 | 11500 | 0.2598 | 0.8126 | 0.8152 | 0.8139 | 0.9810 |
|
84 |
+
| 0.1507 | 6.9859 | 12000 | 0.2607 | 0.8216 | 0.8124 | 0.8170 | 0.9813 |
|
85 |
+
| 0.1467 | 7.2770 | 12500 | 0.2531 | 0.8143 | 0.8227 | 0.8185 | 0.9811 |
|
86 |
+
| 0.1455 | 7.5680 | 13000 | 0.2519 | 0.8229 | 0.8147 | 0.8188 | 0.9813 |
|
87 |
+
| 0.1457 | 7.8591 | 13500 | 0.2524 | 0.8236 | 0.8152 | 0.8194 | 0.9811 |
|
88 |
+
| 0.1454 | 8.1502 | 14000 | 0.2483 | 0.8179 | 0.8194 | 0.8187 | 0.9812 |
|
89 |
+
| 0.1416 | 8.4413 | 14500 | 0.2478 | 0.8188 | 0.8248 | 0.8218 | 0.9814 |
|
90 |
+
| 0.1419 | 8.7324 | 15000 | 0.2484 | 0.8224 | 0.8298 | 0.8261 | 0.9814 |
|
91 |
+
| 0.1404 | 9.0234 | 15500 | 0.2482 | 0.8222 | 0.8201 | 0.8211 | 0.9812 |
|
92 |
+
| 0.1406 | 9.3145 | 16000 | 0.2474 | 0.8227 | 0.8224 | 0.8226 | 0.9816 |
|
93 |
+
| 0.1377 | 9.6056 | 16500 | 0.2448 | 0.8212 | 0.8211 | 0.8212 | 0.9815 |
|
94 |
+
| 0.1401 | 9.8967 | 17000 | 0.2447 | 0.8164 | 0.8230 | 0.8197 | 0.9815 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.44.2
|
100 |
+
- Pytorch 2.1.1+cu121
|
101 |
+
- Datasets 2.14.5
|
102 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "haryoaw/scenario-TCR-NER_data-univner_full",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaForTokenClassificationKD"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "LABEL_0",
|
12 |
+
"1": "LABEL_1",
|
13 |
+
"2": "LABEL_2",
|
14 |
+
"3": "LABEL_3",
|
15 |
+
"4": "LABEL_4",
|
16 |
+
"5": "LABEL_5",
|
17 |
+
"6": "LABEL_6"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 3072,
|
21 |
+
"label2id": {
|
22 |
+
"LABEL_0": 0,
|
23 |
+
"LABEL_1": 1,
|
24 |
+
"LABEL_2": 2,
|
25 |
+
"LABEL_3": 3,
|
26 |
+
"LABEL_4": 4,
|
27 |
+
"LABEL_5": 5,
|
28 |
+
"LABEL_6": 6
|
29 |
+
},
|
30 |
+
"layer_norm_eps": 1e-07,
|
31 |
+
"max_position_embeddings": 512,
|
32 |
+
"max_relative_positions": -1,
|
33 |
+
"model_type": "deberta-v2",
|
34 |
+
"norm_rel_ebd": "layer_norm",
|
35 |
+
"num_attention_heads": 12,
|
36 |
+
"num_hidden_layers": 6,
|
37 |
+
"pad_token_id": 0,
|
38 |
+
"pooler_dropout": 0,
|
39 |
+
"pooler_hidden_act": "gelu",
|
40 |
+
"pooler_hidden_size": 768,
|
41 |
+
"pos_att_type": [
|
42 |
+
"p2c",
|
43 |
+
"c2p"
|
44 |
+
],
|
45 |
+
"position_biased_input": false,
|
46 |
+
"position_buckets": 256,
|
47 |
+
"relative_attention": true,
|
48 |
+
"share_att_key": true,
|
49 |
+
"torch_dtype": "float32",
|
50 |
+
"transformers_version": "4.44.2",
|
51 |
+
"type_vocab_size": 0,
|
52 |
+
"vocab_size": 251000
|
53 |
+
}
|
eval_result_ner.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"ceb_gja": {"precision": 0.6515151515151515, "recall": 0.8775510204081632, "f1": 0.7478260869565216, "accuracy": 0.9776061776061776}, "en_pud": {"precision": 0.7810707456978967, "recall": 0.76, "f1": 0.7703913248467703, "accuracy": 0.9782300717793728}, "de_pud": {"precision": 0.7436619718309859, "recall": 0.7622714148219442, "f1": 0.752851711026616, "accuracy": 0.9738877689747316}, "pt_pud": {"precision": 0.8168402777777778, "recall": 0.8562329390354868, "f1": 0.8360728565082185, "accuracy": 0.9841500405861494}, "ru_pud": {"precision": 0.6722222222222223, "recall": 0.7007722007722008, "f1": 0.6862003780718338, "accuracy": 0.9693619219839835}, "sv_pud": {"precision": 0.8212180746561886, "recall": 0.8124392614188533, "f1": 0.8168050806057645, "accuracy": 0.9822814007129377}, "tl_trg": {"precision": 0.625, "recall": 0.8695652173913043, "f1": 0.7272727272727273, "accuracy": 0.9822888283378747}, "tl_ugnayan": {"precision": 0.55, "recall": 0.6666666666666666, "f1": 0.6027397260273972, "accuracy": 0.9690063810391978}, "zh_gsd": {"precision": 0.8027989821882952, "recall": 0.8226857887874837, "f1": 0.8126207340631035, "accuracy": 0.9757742257742258}, "zh_gsdsimp": {"precision": 0.8126614987080103, "recall": 0.8243774574049804, "f1": 0.8184775536759923, "accuracy": 0.9741924741924742}, "hr_set": {"precision": 0.8802228412256268, "recall": 0.9009265858873842, "f1": 0.8904543853469532, "accuracy": 0.9870981038746909}, "da_ddt": {"precision": 0.8412322274881516, "recall": 0.7941834451901566, "f1": 0.8170310701956272, "accuracy": 0.9857328145265889}, "en_ewt": {"precision": 0.8152069297401348, "recall": 0.7784926470588235, "f1": 0.7964268923366243, "accuracy": 0.9786030202813085}, "pt_bosque": {"precision": 0.8409461663947798, "recall": 0.848559670781893, "f1": 0.8447357640311347, "accuracy": 0.9854006665700623}, "sr_set": {"precision": 0.92, "recall": 0.9232585596221959, "f1": 0.9216263995285799, "accuracy": 0.9887050170738114}, "sk_snk": {"precision": 0.7766323024054983, "recall": 0.740983606557377, "f1": 0.7583892617449665, "accuracy": 0.9682003768844221}, "sv_talbanken": {"precision": 0.8390243902439024, "recall": 0.8775510204081632, "f1": 0.85785536159601, "accuracy": 0.997399028316239}}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad55e94f5d1b9a6243bc6acec39856571bfc08c3712bf3f1b5b169053296c27c
|
3 |
+
size 944366708
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bee3d7833d7d66415518fc44b3d66ac0fa59485a54d83b8f75fb782922dc425
|
3 |
+
size 5304
|