Initial Commit
Browse files- README.md +89 -0
- config.json +39 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
base_model: xlm-roberta-base
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
datasets:
|
| 7 |
+
- tweet_sentiment_multilingual
|
| 8 |
+
metrics:
|
| 9 |
+
- accuracy
|
| 10 |
+
- f1
|
| 11 |
+
model-index:
|
| 12 |
+
- name: scenario-TCR-4_data-cardiffnlp_tweet_sentiment_multilingual_all
|
| 13 |
+
results:
|
| 14 |
+
- task:
|
| 15 |
+
name: Text Classification
|
| 16 |
+
type: text-classification
|
| 17 |
+
dataset:
|
| 18 |
+
name: tweet_sentiment_multilingual
|
| 19 |
+
type: tweet_sentiment_multilingual
|
| 20 |
+
config: all
|
| 21 |
+
split: validation
|
| 22 |
+
args: all
|
| 23 |
+
metrics:
|
| 24 |
+
- name: Accuracy
|
| 25 |
+
type: accuracy
|
| 26 |
+
value: 0.6257716049382716
|
| 27 |
+
- name: F1
|
| 28 |
+
type: f1
|
| 29 |
+
value: 0.6219727973114133
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 33 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 34 |
+
|
| 35 |
+
# scenario-TCR-4_data-cardiffnlp_tweet_sentiment_multilingual_all
|
| 36 |
+
|
| 37 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tweet_sentiment_multilingual dataset.
|
| 38 |
+
It achieves the following results on the evaluation set:
|
| 39 |
+
- Loss: 1.2568
|
| 40 |
+
- Accuracy: 0.6258
|
| 41 |
+
- F1: 0.6220
|
| 42 |
+
|
| 43 |
+
## Model description
|
| 44 |
+
|
| 45 |
+
More information needed
|
| 46 |
+
|
| 47 |
+
## Intended uses & limitations
|
| 48 |
+
|
| 49 |
+
More information needed
|
| 50 |
+
|
| 51 |
+
## Training and evaluation data
|
| 52 |
+
|
| 53 |
+
More information needed
|
| 54 |
+
|
| 55 |
+
## Training procedure
|
| 56 |
+
|
| 57 |
+
### Training hyperparameters
|
| 58 |
+
|
| 59 |
+
The following hyperparameters were used during training:
|
| 60 |
+
- learning_rate: 5e-05
|
| 61 |
+
- train_batch_size: 32
|
| 62 |
+
- eval_batch_size: 32
|
| 63 |
+
- seed: 48
|
| 64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 65 |
+
- lr_scheduler_type: linear
|
| 66 |
+
- num_epochs: 500
|
| 67 |
+
|
| 68 |
+
### Training results
|
| 69 |
+
|
| 70 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
| 71 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
| 72 |
+
| 1.0005 | 1.09 | 500 | 0.9616 | 0.5517 | 0.5238 |
|
| 73 |
+
| 0.8578 | 2.17 | 1000 | 0.8651 | 0.5968 | 0.5750 |
|
| 74 |
+
| 0.7545 | 3.26 | 1500 | 0.9179 | 0.6269 | 0.6224 |
|
| 75 |
+
| 0.6418 | 4.35 | 2000 | 0.9266 | 0.6169 | 0.6117 |
|
| 76 |
+
| 0.5162 | 5.43 | 2500 | 1.0184 | 0.6331 | 0.6298 |
|
| 77 |
+
| 0.4188 | 6.52 | 3000 | 1.1995 | 0.6080 | 0.6075 |
|
| 78 |
+
| 0.3517 | 7.61 | 3500 | 1.2092 | 0.6273 | 0.6260 |
|
| 79 |
+
| 0.2947 | 8.7 | 4000 | 1.2915 | 0.6177 | 0.6171 |
|
| 80 |
+
| 0.2488 | 9.78 | 4500 | 1.3765 | 0.6219 | 0.6210 |
|
| 81 |
+
| 0.2152 | 10.87 | 5000 | 1.2568 | 0.6258 | 0.6220 |
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
### Framework versions
|
| 85 |
+
|
| 86 |
+
- Transformers 4.33.3
|
| 87 |
+
- Pytorch 2.1.1+cu121
|
| 88 |
+
- Datasets 2.14.5
|
| 89 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "xlm-roberta-base",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"XLMRobertaForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"id2label": {
|
| 14 |
+
"0": "LABEL_0",
|
| 15 |
+
"1": "LABEL_1",
|
| 16 |
+
"2": "LABEL_2"
|
| 17 |
+
},
|
| 18 |
+
"initializer_range": 0.02,
|
| 19 |
+
"intermediate_size": 3072,
|
| 20 |
+
"label2id": {
|
| 21 |
+
"LABEL_0": 0,
|
| 22 |
+
"LABEL_1": 1,
|
| 23 |
+
"LABEL_2": 2
|
| 24 |
+
},
|
| 25 |
+
"layer_norm_eps": 1e-05,
|
| 26 |
+
"max_position_embeddings": 514,
|
| 27 |
+
"model_type": "xlm-roberta",
|
| 28 |
+
"num_attention_heads": 12,
|
| 29 |
+
"num_hidden_layers": 12,
|
| 30 |
+
"output_past": true,
|
| 31 |
+
"pad_token_id": 1,
|
| 32 |
+
"position_embedding_type": "absolute",
|
| 33 |
+
"problem_type": "single_label_classification",
|
| 34 |
+
"torch_dtype": "float32",
|
| 35 |
+
"transformers_version": "4.33.3",
|
| 36 |
+
"type_vocab_size": 1,
|
| 37 |
+
"use_cache": true,
|
| 38 |
+
"vocab_size": 250002
|
| 39 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f5d412e59f4a20d10a4524f19d03dc9c9453cdf6b74ec030c341008be0e4f963
|
| 3 |
+
size 1112253230
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:252d2af5b8b9b5cf3cb718dc5897e7fcebba0678c44d9097fc8479619afbe641
|
| 3 |
+
size 4664
|