haryoaw commited on
Commit
eeceb1b
1 Parent(s): b88733f

Initial Commit

Browse files
Files changed (4) hide show
  1. README.md +191 -0
  2. config.json +153 -0
  3. pytorch_model.bin +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: xlm-roberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - massive
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: scenario-NON-KD-SCR-D2_data-AmazonScience_massive_all_1_1_alpha-jason
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: massive
19
+ type: massive
20
+ config: all_1.1
21
+ split: validation
22
+ args: all_1.1
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.8063396269249687
27
+ - name: F1
28
+ type: f1
29
+ value: 0.7734773768161987
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # scenario-NON-KD-SCR-D2_data-AmazonScience_massive_all_1_1_alpha-jason
36
+
37
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the massive dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 1.9035
40
+ - Accuracy: 0.8063
41
+ - F1: 0.7735
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 5e-05
61
+ - train_batch_size: 32
62
+ - eval_batch_size: 32
63
+ - seed: 111
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 30
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|
72
+ | 1.5552 | 0.27 | 5000 | 1.5319 | 0.5845 | 0.4786 |
73
+ | 1.0578 | 0.53 | 10000 | 1.0587 | 0.7169 | 0.6341 |
74
+ | 0.883 | 0.8 | 15000 | 0.9303 | 0.7512 | 0.6959 |
75
+ | 0.6259 | 1.07 | 20000 | 0.8622 | 0.7759 | 0.7247 |
76
+ | 0.5994 | 1.34 | 25000 | 0.8258 | 0.7854 | 0.7403 |
77
+ | 0.6048 | 1.6 | 30000 | 0.7925 | 0.7930 | 0.7466 |
78
+ | 0.5577 | 1.87 | 35000 | 0.7766 | 0.7987 | 0.7500 |
79
+ | 0.3568 | 2.14 | 40000 | 0.8502 | 0.8004 | 0.7605 |
80
+ | 0.3809 | 2.41 | 45000 | 0.8274 | 0.7973 | 0.7671 |
81
+ | 0.3825 | 2.67 | 50000 | 0.8014 | 0.8059 | 0.7723 |
82
+ | 0.3808 | 2.94 | 55000 | 0.8177 | 0.8068 | 0.7701 |
83
+ | 0.2409 | 3.21 | 60000 | 0.8972 | 0.8040 | 0.7748 |
84
+ | 0.2636 | 3.47 | 65000 | 0.8961 | 0.8053 | 0.7667 |
85
+ | 0.2662 | 3.74 | 70000 | 0.8865 | 0.8035 | 0.7687 |
86
+ | 0.2355 | 4.01 | 75000 | 0.9449 | 0.8076 | 0.7742 |
87
+ | 0.1731 | 4.28 | 80000 | 1.0169 | 0.8049 | 0.7672 |
88
+ | 0.1972 | 4.54 | 85000 | 0.9849 | 0.8065 | 0.7753 |
89
+ | 0.2029 | 4.81 | 90000 | 0.9689 | 0.8089 | 0.7772 |
90
+ | 0.1278 | 5.08 | 95000 | 1.0929 | 0.8076 | 0.7785 |
91
+ | 0.1453 | 5.34 | 100000 | 1.0971 | 0.8082 | 0.7786 |
92
+ | 0.1534 | 5.61 | 105000 | 1.0825 | 0.8046 | 0.7760 |
93
+ | 0.1538 | 5.88 | 110000 | 1.0960 | 0.8084 | 0.7769 |
94
+ | 0.0979 | 6.15 | 115000 | 1.2774 | 0.8015 | 0.7706 |
95
+ | 0.1093 | 6.41 | 120000 | 1.2227 | 0.8060 | 0.7785 |
96
+ | 0.1149 | 6.68 | 125000 | 1.2517 | 0.8085 | 0.7784 |
97
+ | 0.1239 | 6.95 | 130000 | 1.2183 | 0.8073 | 0.7747 |
98
+ | 0.0908 | 7.22 | 135000 | 1.2683 | 0.8062 | 0.7758 |
99
+ | 0.1043 | 7.48 | 140000 | 1.2992 | 0.8065 | 0.7781 |
100
+ | 0.0971 | 7.75 | 145000 | 1.2978 | 0.8062 | 0.7752 |
101
+ | 0.0872 | 8.02 | 150000 | 1.3343 | 0.8046 | 0.7745 |
102
+ | 0.0762 | 8.28 | 155000 | 1.4315 | 0.8037 | 0.7793 |
103
+ | 0.0856 | 8.55 | 160000 | 1.3695 | 0.8068 | 0.7804 |
104
+ | 0.0923 | 8.82 | 165000 | 1.3585 | 0.8077 | 0.7811 |
105
+ | 0.0611 | 9.09 | 170000 | 1.4557 | 0.8039 | 0.7754 |
106
+ | 0.0671 | 9.35 | 175000 | 1.4726 | 0.8029 | 0.7708 |
107
+ | 0.0711 | 9.62 | 180000 | 1.4840 | 0.8042 | 0.7728 |
108
+ | 0.0757 | 9.89 | 185000 | 1.4514 | 0.8029 | 0.7702 |
109
+ | 0.0543 | 10.15 | 190000 | 1.5208 | 0.8046 | 0.7731 |
110
+ | 0.0527 | 10.42 | 195000 | 1.6045 | 0.8019 | 0.7725 |
111
+ | 0.064 | 10.69 | 200000 | 1.4989 | 0.8038 | 0.7742 |
112
+ | 0.0616 | 10.96 | 205000 | 1.5399 | 0.8037 | 0.7727 |
113
+ | 0.0543 | 11.22 | 210000 | 1.4915 | 0.8081 | 0.7783 |
114
+ | 0.0506 | 11.49 | 215000 | 1.5569 | 0.8044 | 0.7728 |
115
+ | 0.063 | 11.76 | 220000 | 1.5712 | 0.8000 | 0.7725 |
116
+ | 0.0372 | 12.03 | 225000 | 1.6183 | 0.8029 | 0.7732 |
117
+ | 0.0449 | 12.29 | 230000 | 1.6299 | 0.8006 | 0.7740 |
118
+ | 0.0522 | 12.56 | 235000 | 1.6166 | 0.8030 | 0.7714 |
119
+ | 0.048 | 12.83 | 240000 | 1.6537 | 0.8014 | 0.7720 |
120
+ | 0.0354 | 13.09 | 245000 | 1.6848 | 0.8031 | 0.7732 |
121
+ | 0.0394 | 13.36 | 250000 | 1.6748 | 0.8014 | 0.7713 |
122
+ | 0.0427 | 13.63 | 255000 | 1.6233 | 0.8026 | 0.7715 |
123
+ | 0.0499 | 13.9 | 260000 | 1.6319 | 0.8028 | 0.7749 |
124
+ | 0.0331 | 14.16 | 265000 | 1.6896 | 0.8028 | 0.7734 |
125
+ | 0.0383 | 14.43 | 270000 | 1.6646 | 0.8023 | 0.7723 |
126
+ | 0.0476 | 14.7 | 275000 | 1.6470 | 0.8024 | 0.7730 |
127
+ | 0.0484 | 14.96 | 280000 | 1.6553 | 0.8012 | 0.7721 |
128
+ | 0.0382 | 15.23 | 285000 | 1.6914 | 0.8003 | 0.7689 |
129
+ | 0.0386 | 15.5 | 290000 | 1.7338 | 0.8025 | 0.7720 |
130
+ | 0.0388 | 15.77 | 295000 | 1.7424 | 0.8005 | 0.7708 |
131
+ | 0.023 | 16.03 | 300000 | 1.7477 | 0.8034 | 0.7745 |
132
+ | 0.028 | 16.3 | 305000 | 1.7383 | 0.8026 | 0.7734 |
133
+ | 0.0323 | 16.57 | 310000 | 1.7738 | 0.8019 | 0.7702 |
134
+ | 0.032 | 16.84 | 315000 | 1.7840 | 0.8021 | 0.7735 |
135
+ | 0.0247 | 17.1 | 320000 | 1.7916 | 0.8034 | 0.7707 |
136
+ | 0.0278 | 17.37 | 325000 | 1.7800 | 0.8019 | 0.7751 |
137
+ | 0.0293 | 17.64 | 330000 | 1.8049 | 0.8016 | 0.7687 |
138
+ | 0.0354 | 17.9 | 335000 | 1.7460 | 0.8024 | 0.7671 |
139
+ | 0.0204 | 18.17 | 340000 | 1.8295 | 0.8002 | 0.7687 |
140
+ | 0.0262 | 18.44 | 345000 | 1.7830 | 0.8026 | 0.7689 |
141
+ | 0.0277 | 18.71 | 350000 | 1.8273 | 0.8010 | 0.7688 |
142
+ | 0.0285 | 18.97 | 355000 | 1.8188 | 0.8012 | 0.7701 |
143
+ | 0.0236 | 19.24 | 360000 | 1.8336 | 0.8008 | 0.7676 |
144
+ | 0.0235 | 19.51 | 365000 | 1.8579 | 0.8013 | 0.7688 |
145
+ | 0.0215 | 19.77 | 370000 | 1.8419 | 0.8030 | 0.7738 |
146
+ | 0.0143 | 20.04 | 375000 | 1.8498 | 0.8023 | 0.7713 |
147
+ | 0.0231 | 20.31 | 380000 | 1.8420 | 0.8013 | 0.7699 |
148
+ | 0.0177 | 20.58 | 385000 | 1.8397 | 0.8027 | 0.7736 |
149
+ | 0.0278 | 20.84 | 390000 | 1.8459 | 0.7993 | 0.7664 |
150
+ | 0.0153 | 21.11 | 395000 | 1.8486 | 0.8005 | 0.7706 |
151
+ | 0.0152 | 21.38 | 400000 | 1.8825 | 0.8030 | 0.7700 |
152
+ | 0.0185 | 21.65 | 405000 | 1.8098 | 0.8044 | 0.7724 |
153
+ | 0.0129 | 21.91 | 410000 | 1.8306 | 0.8030 | 0.7662 |
154
+ | 0.0136 | 22.18 | 415000 | 1.9011 | 0.8026 | 0.7680 |
155
+ | 0.0167 | 22.45 | 420000 | 1.8608 | 0.8024 | 0.7698 |
156
+ | 0.0144 | 22.71 | 425000 | 1.8313 | 0.8040 | 0.7716 |
157
+ | 0.0152 | 22.98 | 430000 | 1.8538 | 0.8035 | 0.7695 |
158
+ | 0.0116 | 23.25 | 435000 | 1.8521 | 0.8043 | 0.7734 |
159
+ | 0.0146 | 23.52 | 440000 | 1.8894 | 0.8023 | 0.7685 |
160
+ | 0.0144 | 23.78 | 445000 | 1.8697 | 0.8031 | 0.7700 |
161
+ | 0.0096 | 24.05 | 450000 | 1.9006 | 0.8018 | 0.7696 |
162
+ | 0.0124 | 24.32 | 455000 | 1.8807 | 0.8048 | 0.7722 |
163
+ | 0.0143 | 24.58 | 460000 | 1.8737 | 0.8025 | 0.7656 |
164
+ | 0.0156 | 24.85 | 465000 | 1.8611 | 0.8042 | 0.7723 |
165
+ | 0.008 | 25.12 | 470000 | 1.8998 | 0.8035 | 0.7733 |
166
+ | 0.0115 | 25.39 | 475000 | 1.9243 | 0.8026 | 0.7724 |
167
+ | 0.0133 | 25.65 | 480000 | 1.9014 | 0.8027 | 0.7693 |
168
+ | 0.0101 | 25.92 | 485000 | 1.8664 | 0.8046 | 0.7731 |
169
+ | 0.0079 | 26.19 | 490000 | 1.8896 | 0.8039 | 0.7676 |
170
+ | 0.0108 | 26.46 | 495000 | 1.8998 | 0.8057 | 0.7727 |
171
+ | 0.0084 | 26.72 | 500000 | 1.8500 | 0.8023 | 0.7695 |
172
+ | 0.0119 | 26.99 | 505000 | 1.8798 | 0.8051 | 0.7724 |
173
+ | 0.0089 | 27.26 | 510000 | 1.8926 | 0.8044 | 0.7721 |
174
+ | 0.0085 | 27.52 | 515000 | 1.8820 | 0.8056 | 0.7745 |
175
+ | 0.007 | 27.79 | 520000 | 1.8751 | 0.8047 | 0.7721 |
176
+ | 0.0061 | 28.06 | 525000 | 1.8955 | 0.8060 | 0.7733 |
177
+ | 0.0073 | 28.33 | 530000 | 1.9120 | 0.8049 | 0.7734 |
178
+ | 0.0095 | 28.59 | 535000 | 1.8995 | 0.8055 | 0.7724 |
179
+ | 0.0095 | 28.86 | 540000 | 1.8815 | 0.8058 | 0.7751 |
180
+ | 0.0067 | 29.13 | 545000 | 1.9046 | 0.8062 | 0.7734 |
181
+ | 0.0074 | 29.39 | 550000 | 1.8968 | 0.8060 | 0.7730 |
182
+ | 0.0064 | 29.66 | 555000 | 1.9066 | 0.8062 | 0.7740 |
183
+ | 0.0054 | 29.93 | 560000 | 1.9035 | 0.8063 | 0.7735 |
184
+
185
+
186
+ ### Framework versions
187
+
188
+ - Transformers 4.33.3
189
+ - Pytorch 2.1.1+cu121
190
+ - Datasets 2.14.5
191
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4",
19
+ "5": "LABEL_5",
20
+ "6": "LABEL_6",
21
+ "7": "LABEL_7",
22
+ "8": "LABEL_8",
23
+ "9": "LABEL_9",
24
+ "10": "LABEL_10",
25
+ "11": "LABEL_11",
26
+ "12": "LABEL_12",
27
+ "13": "LABEL_13",
28
+ "14": "LABEL_14",
29
+ "15": "LABEL_15",
30
+ "16": "LABEL_16",
31
+ "17": "LABEL_17",
32
+ "18": "LABEL_18",
33
+ "19": "LABEL_19",
34
+ "20": "LABEL_20",
35
+ "21": "LABEL_21",
36
+ "22": "LABEL_22",
37
+ "23": "LABEL_23",
38
+ "24": "LABEL_24",
39
+ "25": "LABEL_25",
40
+ "26": "LABEL_26",
41
+ "27": "LABEL_27",
42
+ "28": "LABEL_28",
43
+ "29": "LABEL_29",
44
+ "30": "LABEL_30",
45
+ "31": "LABEL_31",
46
+ "32": "LABEL_32",
47
+ "33": "LABEL_33",
48
+ "34": "LABEL_34",
49
+ "35": "LABEL_35",
50
+ "36": "LABEL_36",
51
+ "37": "LABEL_37",
52
+ "38": "LABEL_38",
53
+ "39": "LABEL_39",
54
+ "40": "LABEL_40",
55
+ "41": "LABEL_41",
56
+ "42": "LABEL_42",
57
+ "43": "LABEL_43",
58
+ "44": "LABEL_44",
59
+ "45": "LABEL_45",
60
+ "46": "LABEL_46",
61
+ "47": "LABEL_47",
62
+ "48": "LABEL_48",
63
+ "49": "LABEL_49",
64
+ "50": "LABEL_50",
65
+ "51": "LABEL_51",
66
+ "52": "LABEL_52",
67
+ "53": "LABEL_53",
68
+ "54": "LABEL_54",
69
+ "55": "LABEL_55",
70
+ "56": "LABEL_56",
71
+ "57": "LABEL_57",
72
+ "58": "LABEL_58",
73
+ "59": "LABEL_59"
74
+ },
75
+ "initializer_range": 0.02,
76
+ "intermediate_size": 3072,
77
+ "label2id": {
78
+ "LABEL_0": 0,
79
+ "LABEL_1": 1,
80
+ "LABEL_10": 10,
81
+ "LABEL_11": 11,
82
+ "LABEL_12": 12,
83
+ "LABEL_13": 13,
84
+ "LABEL_14": 14,
85
+ "LABEL_15": 15,
86
+ "LABEL_16": 16,
87
+ "LABEL_17": 17,
88
+ "LABEL_18": 18,
89
+ "LABEL_19": 19,
90
+ "LABEL_2": 2,
91
+ "LABEL_20": 20,
92
+ "LABEL_21": 21,
93
+ "LABEL_22": 22,
94
+ "LABEL_23": 23,
95
+ "LABEL_24": 24,
96
+ "LABEL_25": 25,
97
+ "LABEL_26": 26,
98
+ "LABEL_27": 27,
99
+ "LABEL_28": 28,
100
+ "LABEL_29": 29,
101
+ "LABEL_3": 3,
102
+ "LABEL_30": 30,
103
+ "LABEL_31": 31,
104
+ "LABEL_32": 32,
105
+ "LABEL_33": 33,
106
+ "LABEL_34": 34,
107
+ "LABEL_35": 35,
108
+ "LABEL_36": 36,
109
+ "LABEL_37": 37,
110
+ "LABEL_38": 38,
111
+ "LABEL_39": 39,
112
+ "LABEL_4": 4,
113
+ "LABEL_40": 40,
114
+ "LABEL_41": 41,
115
+ "LABEL_42": 42,
116
+ "LABEL_43": 43,
117
+ "LABEL_44": 44,
118
+ "LABEL_45": 45,
119
+ "LABEL_46": 46,
120
+ "LABEL_47": 47,
121
+ "LABEL_48": 48,
122
+ "LABEL_49": 49,
123
+ "LABEL_5": 5,
124
+ "LABEL_50": 50,
125
+ "LABEL_51": 51,
126
+ "LABEL_52": 52,
127
+ "LABEL_53": 53,
128
+ "LABEL_54": 54,
129
+ "LABEL_55": 55,
130
+ "LABEL_56": 56,
131
+ "LABEL_57": 57,
132
+ "LABEL_58": 58,
133
+ "LABEL_59": 59,
134
+ "LABEL_6": 6,
135
+ "LABEL_7": 7,
136
+ "LABEL_8": 8,
137
+ "LABEL_9": 9
138
+ },
139
+ "layer_norm_eps": 1e-05,
140
+ "max_position_embeddings": 514,
141
+ "model_type": "xlm-roberta",
142
+ "num_attention_heads": 12,
143
+ "num_hidden_layers": 6,
144
+ "output_past": true,
145
+ "pad_token_id": 1,
146
+ "position_embedding_type": "absolute",
147
+ "problem_type": "single_label_classification",
148
+ "torch_dtype": "float32",
149
+ "transformers_version": "4.33.3",
150
+ "type_vocab_size": 1,
151
+ "use_cache": true,
152
+ "vocab_size": 250002
153
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff224c0b2501bdc82dc69ef7e5244a7fada3cb27cf8b16bb0e475e9055a1fa87
3
+ size 942286382
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:270dbfc997b4136e5537465712f96e758680a0846baccd95eda12da89f97ead6
3
+ size 4600