haryoaw commited on
Commit
a485dd5
1 Parent(s): 67e0a75

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +171 -0
  2. config.json +159 -0
  3. eval_results_ml.json +1 -0
  4. pytorch_model.bin +3 -0
  5. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - massive
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_155
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # scenario-KD-PR-MSV-EN-CL-D2_data-en-massive_all_1_155
20
+
21
+ This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1) on the massive dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 3.1707
24
+ - Accuracy: 0.4471
25
+ - F1: 0.4385
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 32
46
+ - eval_batch_size: 32
47
+ - seed: 55
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 30
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
56
+ | No log | 0.28 | 100 | 3.7123 | 0.2625 | 0.1148 |
57
+ | No log | 0.56 | 200 | 3.5358 | 0.3390 | 0.2394 |
58
+ | No log | 0.83 | 300 | 3.3412 | 0.3922 | 0.3123 |
59
+ | No log | 1.11 | 400 | 3.4008 | 0.3772 | 0.3110 |
60
+ | 2.4588 | 1.39 | 500 | 3.2536 | 0.4111 | 0.3405 |
61
+ | 2.4588 | 1.67 | 600 | 3.2840 | 0.4097 | 0.3563 |
62
+ | 2.4588 | 1.94 | 700 | 3.1644 | 0.4307 | 0.3710 |
63
+ | 2.4588 | 2.22 | 800 | 3.1380 | 0.4364 | 0.3872 |
64
+ | 2.4588 | 2.5 | 900 | 3.2618 | 0.4180 | 0.3833 |
65
+ | 1.4472 | 2.78 | 1000 | 3.1488 | 0.4300 | 0.3861 |
66
+ | 1.4472 | 3.06 | 1100 | 3.1174 | 0.4488 | 0.4097 |
67
+ | 1.4472 | 3.33 | 1200 | 3.1442 | 0.4481 | 0.4091 |
68
+ | 1.4472 | 3.61 | 1300 | 3.3004 | 0.4111 | 0.3841 |
69
+ | 1.4472 | 3.89 | 1400 | 3.3097 | 0.4010 | 0.3802 |
70
+ | 1.2115 | 4.17 | 1500 | 3.3768 | 0.4052 | 0.3846 |
71
+ | 1.2115 | 4.44 | 1600 | 3.3732 | 0.4077 | 0.3919 |
72
+ | 1.2115 | 4.72 | 1700 | 3.3767 | 0.4125 | 0.3980 |
73
+ | 1.2115 | 5.0 | 1800 | 3.3720 | 0.4195 | 0.3896 |
74
+ | 1.2115 | 5.28 | 1900 | 3.3548 | 0.4147 | 0.3941 |
75
+ | 1.0796 | 5.56 | 2000 | 3.6313 | 0.3784 | 0.3743 |
76
+ | 1.0796 | 5.83 | 2100 | 3.2951 | 0.4186 | 0.3930 |
77
+ | 1.0796 | 6.11 | 2200 | 3.2913 | 0.4267 | 0.3988 |
78
+ | 1.0796 | 6.39 | 2300 | 3.1985 | 0.4357 | 0.4107 |
79
+ | 1.0796 | 6.67 | 2400 | 3.4566 | 0.3963 | 0.3932 |
80
+ | 1.01 | 6.94 | 2500 | 3.3982 | 0.4094 | 0.4000 |
81
+ | 1.01 | 7.22 | 2600 | 3.2082 | 0.4343 | 0.3960 |
82
+ | 1.01 | 7.5 | 2700 | 3.3417 | 0.4153 | 0.4042 |
83
+ | 1.01 | 7.78 | 2800 | 3.2235 | 0.4332 | 0.4025 |
84
+ | 1.01 | 8.06 | 2900 | 3.2782 | 0.4264 | 0.4084 |
85
+ | 0.9549 | 8.33 | 3000 | 3.3575 | 0.4120 | 0.3981 |
86
+ | 0.9549 | 8.61 | 3100 | 3.2973 | 0.4231 | 0.4094 |
87
+ | 0.9549 | 8.89 | 3200 | 3.3885 | 0.4086 | 0.3964 |
88
+ | 0.9549 | 9.17 | 3300 | 3.3343 | 0.4185 | 0.4105 |
89
+ | 0.9549 | 9.44 | 3400 | 3.3463 | 0.4177 | 0.4090 |
90
+ | 0.9242 | 9.72 | 3500 | 3.2792 | 0.4287 | 0.4131 |
91
+ | 0.9242 | 10.0 | 3600 | 3.3775 | 0.4110 | 0.4032 |
92
+ | 0.9242 | 10.28 | 3700 | 3.3542 | 0.4210 | 0.4144 |
93
+ | 0.9242 | 10.56 | 3800 | 3.2521 | 0.4345 | 0.4194 |
94
+ | 0.9242 | 10.83 | 3900 | 3.3305 | 0.4234 | 0.4080 |
95
+ | 0.9048 | 11.11 | 4000 | 3.5624 | 0.3953 | 0.4027 |
96
+ | 0.9048 | 11.39 | 4100 | 3.5235 | 0.3909 | 0.3993 |
97
+ | 0.9048 | 11.67 | 4200 | 3.3855 | 0.4153 | 0.3993 |
98
+ | 0.9048 | 11.94 | 4300 | 3.4062 | 0.4026 | 0.3931 |
99
+ | 0.9048 | 12.22 | 4400 | 3.3170 | 0.4241 | 0.4154 |
100
+ | 0.8863 | 12.5 | 4500 | 3.2977 | 0.4287 | 0.4153 |
101
+ | 0.8863 | 12.78 | 4600 | 3.5425 | 0.3886 | 0.3976 |
102
+ | 0.8863 | 13.06 | 4700 | 3.4107 | 0.4081 | 0.3997 |
103
+ | 0.8863 | 13.33 | 4800 | 3.4859 | 0.4068 | 0.4001 |
104
+ | 0.8863 | 13.61 | 4900 | 3.4532 | 0.4104 | 0.4136 |
105
+ | 0.8764 | 13.89 | 5000 | 3.4220 | 0.4105 | 0.4108 |
106
+ | 0.8764 | 14.17 | 5100 | 3.4623 | 0.4121 | 0.4171 |
107
+ | 0.8764 | 14.44 | 5200 | 3.4474 | 0.4026 | 0.4045 |
108
+ | 0.8764 | 14.72 | 5300 | 3.3895 | 0.4177 | 0.4161 |
109
+ | 0.8764 | 15.0 | 5400 | 3.2330 | 0.4416 | 0.4290 |
110
+ | 0.8673 | 15.28 | 5500 | 3.3441 | 0.4180 | 0.4133 |
111
+ | 0.8673 | 15.56 | 5600 | 3.3918 | 0.4172 | 0.4166 |
112
+ | 0.8673 | 15.83 | 5700 | 3.2297 | 0.4393 | 0.4187 |
113
+ | 0.8673 | 16.11 | 5800 | 3.2193 | 0.4418 | 0.4287 |
114
+ | 0.8673 | 16.39 | 5900 | 3.4330 | 0.4124 | 0.4190 |
115
+ | 0.8595 | 16.67 | 6000 | 3.2666 | 0.4351 | 0.4289 |
116
+ | 0.8595 | 16.94 | 6100 | 3.1744 | 0.4529 | 0.4413 |
117
+ | 0.8595 | 17.22 | 6200 | 3.4892 | 0.4036 | 0.4129 |
118
+ | 0.8595 | 17.5 | 6300 | 3.3720 | 0.4189 | 0.4215 |
119
+ | 0.8595 | 17.78 | 6400 | 3.3287 | 0.4213 | 0.4179 |
120
+ | 0.8523 | 18.06 | 6500 | 3.4352 | 0.4089 | 0.4124 |
121
+ | 0.8523 | 18.33 | 6600 | 3.2985 | 0.4255 | 0.4233 |
122
+ | 0.8523 | 18.61 | 6700 | 3.2437 | 0.4355 | 0.4274 |
123
+ | 0.8523 | 18.89 | 6800 | 3.3418 | 0.4200 | 0.4139 |
124
+ | 0.8523 | 19.17 | 6900 | 3.2395 | 0.4346 | 0.4342 |
125
+ | 0.8491 | 19.44 | 7000 | 3.2704 | 0.4283 | 0.4115 |
126
+ | 0.8491 | 19.72 | 7100 | 3.2447 | 0.4378 | 0.4256 |
127
+ | 0.8491 | 20.0 | 7200 | 3.2999 | 0.4281 | 0.4272 |
128
+ | 0.8491 | 20.28 | 7300 | 3.2139 | 0.4346 | 0.4371 |
129
+ | 0.8491 | 20.56 | 7400 | 3.3605 | 0.4190 | 0.4138 |
130
+ | 0.8447 | 20.83 | 7500 | 3.3631 | 0.4216 | 0.4171 |
131
+ | 0.8447 | 21.11 | 7600 | 3.2030 | 0.4422 | 0.4276 |
132
+ | 0.8447 | 21.39 | 7700 | 3.3002 | 0.4257 | 0.4256 |
133
+ | 0.8447 | 21.67 | 7800 | 3.3028 | 0.4275 | 0.4296 |
134
+ | 0.8447 | 21.94 | 7900 | 3.2922 | 0.4281 | 0.4225 |
135
+ | 0.8412 | 22.22 | 8000 | 3.1588 | 0.4464 | 0.4339 |
136
+ | 0.8412 | 22.5 | 8100 | 3.2553 | 0.4367 | 0.4307 |
137
+ | 0.8412 | 22.78 | 8200 | 3.1886 | 0.4433 | 0.4365 |
138
+ | 0.8412 | 23.06 | 8300 | 3.3312 | 0.4245 | 0.4270 |
139
+ | 0.8412 | 23.33 | 8400 | 3.2022 | 0.4447 | 0.4338 |
140
+ | 0.8389 | 23.61 | 8500 | 3.3122 | 0.4214 | 0.4179 |
141
+ | 0.8389 | 23.89 | 8600 | 3.0719 | 0.4621 | 0.4380 |
142
+ | 0.8389 | 24.17 | 8700 | 3.2395 | 0.4386 | 0.4262 |
143
+ | 0.8389 | 24.44 | 8800 | 3.2242 | 0.4364 | 0.4339 |
144
+ | 0.8389 | 24.72 | 8900 | 3.3582 | 0.4201 | 0.4197 |
145
+ | 0.8333 | 25.0 | 9000 | 3.1279 | 0.4537 | 0.4377 |
146
+ | 0.8333 | 25.28 | 9100 | 3.1643 | 0.4458 | 0.4361 |
147
+ | 0.8333 | 25.56 | 9200 | 3.1543 | 0.4503 | 0.4358 |
148
+ | 0.8333 | 25.83 | 9300 | 3.2963 | 0.4251 | 0.4243 |
149
+ | 0.8333 | 26.11 | 9400 | 3.0952 | 0.4567 | 0.4375 |
150
+ | 0.8326 | 26.39 | 9500 | 3.2282 | 0.4385 | 0.4347 |
151
+ | 0.8326 | 26.67 | 9600 | 3.1402 | 0.4512 | 0.4411 |
152
+ | 0.8326 | 26.94 | 9700 | 3.2730 | 0.4321 | 0.4331 |
153
+ | 0.8326 | 27.22 | 9800 | 3.2324 | 0.4393 | 0.4374 |
154
+ | 0.8326 | 27.5 | 9900 | 3.2203 | 0.4418 | 0.4380 |
155
+ | 0.8304 | 27.78 | 10000 | 3.1916 | 0.4444 | 0.4388 |
156
+ | 0.8304 | 28.06 | 10100 | 3.2167 | 0.4395 | 0.4370 |
157
+ | 0.8304 | 28.33 | 10200 | 3.1614 | 0.4477 | 0.4386 |
158
+ | 0.8304 | 28.61 | 10300 | 3.1688 | 0.4483 | 0.4361 |
159
+ | 0.8304 | 28.89 | 10400 | 3.1459 | 0.4511 | 0.4427 |
160
+ | 0.8306 | 29.17 | 10500 | 3.1191 | 0.4546 | 0.4433 |
161
+ | 0.8306 | 29.44 | 10600 | 3.1557 | 0.4493 | 0.4417 |
162
+ | 0.8306 | 29.72 | 10700 | 3.1777 | 0.4456 | 0.4385 |
163
+ | 0.8306 | 30.0 | 10800 | 3.1707 | 0.4471 | 0.4385 |
164
+
165
+
166
+ ### Framework versions
167
+
168
+ - Transformers 4.33.3
169
+ - Pytorch 2.1.1+cu121
170
+ - Datasets 2.14.5
171
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "haryoaw/scenario-MDBT-TCR_data-cl-massive_all_1_1",
3
+ "architectures": [
4
+ "DebertaForSequenceClassificationKD"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "id2label": {
11
+ "0": "LABEL_0",
12
+ "1": "LABEL_1",
13
+ "2": "LABEL_2",
14
+ "3": "LABEL_3",
15
+ "4": "LABEL_4",
16
+ "5": "LABEL_5",
17
+ "6": "LABEL_6",
18
+ "7": "LABEL_7",
19
+ "8": "LABEL_8",
20
+ "9": "LABEL_9",
21
+ "10": "LABEL_10",
22
+ "11": "LABEL_11",
23
+ "12": "LABEL_12",
24
+ "13": "LABEL_13",
25
+ "14": "LABEL_14",
26
+ "15": "LABEL_15",
27
+ "16": "LABEL_16",
28
+ "17": "LABEL_17",
29
+ "18": "LABEL_18",
30
+ "19": "LABEL_19",
31
+ "20": "LABEL_20",
32
+ "21": "LABEL_21",
33
+ "22": "LABEL_22",
34
+ "23": "LABEL_23",
35
+ "24": "LABEL_24",
36
+ "25": "LABEL_25",
37
+ "26": "LABEL_26",
38
+ "27": "LABEL_27",
39
+ "28": "LABEL_28",
40
+ "29": "LABEL_29",
41
+ "30": "LABEL_30",
42
+ "31": "LABEL_31",
43
+ "32": "LABEL_32",
44
+ "33": "LABEL_33",
45
+ "34": "LABEL_34",
46
+ "35": "LABEL_35",
47
+ "36": "LABEL_36",
48
+ "37": "LABEL_37",
49
+ "38": "LABEL_38",
50
+ "39": "LABEL_39",
51
+ "40": "LABEL_40",
52
+ "41": "LABEL_41",
53
+ "42": "LABEL_42",
54
+ "43": "LABEL_43",
55
+ "44": "LABEL_44",
56
+ "45": "LABEL_45",
57
+ "46": "LABEL_46",
58
+ "47": "LABEL_47",
59
+ "48": "LABEL_48",
60
+ "49": "LABEL_49",
61
+ "50": "LABEL_50",
62
+ "51": "LABEL_51",
63
+ "52": "LABEL_52",
64
+ "53": "LABEL_53",
65
+ "54": "LABEL_54",
66
+ "55": "LABEL_55",
67
+ "56": "LABEL_56",
68
+ "57": "LABEL_57",
69
+ "58": "LABEL_58",
70
+ "59": "LABEL_59"
71
+ },
72
+ "initializer_range": 0.02,
73
+ "intermediate_size": 3072,
74
+ "label2id": {
75
+ "LABEL_0": 0,
76
+ "LABEL_1": 1,
77
+ "LABEL_10": 10,
78
+ "LABEL_11": 11,
79
+ "LABEL_12": 12,
80
+ "LABEL_13": 13,
81
+ "LABEL_14": 14,
82
+ "LABEL_15": 15,
83
+ "LABEL_16": 16,
84
+ "LABEL_17": 17,
85
+ "LABEL_18": 18,
86
+ "LABEL_19": 19,
87
+ "LABEL_2": 2,
88
+ "LABEL_20": 20,
89
+ "LABEL_21": 21,
90
+ "LABEL_22": 22,
91
+ "LABEL_23": 23,
92
+ "LABEL_24": 24,
93
+ "LABEL_25": 25,
94
+ "LABEL_26": 26,
95
+ "LABEL_27": 27,
96
+ "LABEL_28": 28,
97
+ "LABEL_29": 29,
98
+ "LABEL_3": 3,
99
+ "LABEL_30": 30,
100
+ "LABEL_31": 31,
101
+ "LABEL_32": 32,
102
+ "LABEL_33": 33,
103
+ "LABEL_34": 34,
104
+ "LABEL_35": 35,
105
+ "LABEL_36": 36,
106
+ "LABEL_37": 37,
107
+ "LABEL_38": 38,
108
+ "LABEL_39": 39,
109
+ "LABEL_4": 4,
110
+ "LABEL_40": 40,
111
+ "LABEL_41": 41,
112
+ "LABEL_42": 42,
113
+ "LABEL_43": 43,
114
+ "LABEL_44": 44,
115
+ "LABEL_45": 45,
116
+ "LABEL_46": 46,
117
+ "LABEL_47": 47,
118
+ "LABEL_48": 48,
119
+ "LABEL_49": 49,
120
+ "LABEL_5": 5,
121
+ "LABEL_50": 50,
122
+ "LABEL_51": 51,
123
+ "LABEL_52": 52,
124
+ "LABEL_53": 53,
125
+ "LABEL_54": 54,
126
+ "LABEL_55": 55,
127
+ "LABEL_56": 56,
128
+ "LABEL_57": 57,
129
+ "LABEL_58": 58,
130
+ "LABEL_59": 59,
131
+ "LABEL_6": 6,
132
+ "LABEL_7": 7,
133
+ "LABEL_8": 8,
134
+ "LABEL_9": 9
135
+ },
136
+ "layer_norm_eps": 1e-07,
137
+ "max_position_embeddings": 512,
138
+ "max_relative_positions": -1,
139
+ "model_type": "deberta-v2",
140
+ "norm_rel_ebd": "layer_norm",
141
+ "num_attention_heads": 12,
142
+ "num_hidden_layers": 6,
143
+ "pad_token_id": 0,
144
+ "pooler_dropout": 0,
145
+ "pooler_hidden_act": "gelu",
146
+ "pooler_hidden_size": 768,
147
+ "pos_att_type": [
148
+ "p2c",
149
+ "c2p"
150
+ ],
151
+ "position_biased_input": false,
152
+ "position_buckets": 256,
153
+ "relative_attention": true,
154
+ "share_att_key": true,
155
+ "torch_dtype": "float32",
156
+ "transformers_version": "4.33.3",
157
+ "type_vocab_size": 0,
158
+ "vocab_size": 251000
159
+ }
eval_results_ml.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"fi-FI": {"f1": 0.4538800596338723, "accuracy": 0.5050437121721587}, "sq-AL": {"f1": 0.29663347912907584, "accuracy": 0.34532616005379957}, "lv-LV": {"f1": 0.4023967449936748, "accuracy": 0.4468728984532616}, "ur-PK": {"f1": 0.15453881667790073, "accuracy": 0.20645595158036315}, "ko-KR": {"f1": 0.4312013525829156, "accuracy": 0.4855413584398117}, "vi-VN": {"f1": 0.27735940765540884, "accuracy": 0.3093476798924008}, "it-IT": {"f1": 0.48123622473743205, "accuracy": 0.5460659045057162}, "jv-ID": {"f1": 0.35471851924668046, "accuracy": 0.40484196368527237}, "ro-RO": {"f1": 0.4439865482276279, "accuracy": 0.49394754539340957}, "is-IS": {"f1": 0.37013547512714523, "accuracy": 0.39509078681909887}, "pl-PL": {"f1": 0.46831688889151163, "accuracy": 0.5295897780766644}, "ca-ES": {"f1": 0.42562328824249523, "accuracy": 0.4593140551445864}, "te-IN": {"f1": 0.16726922087121818, "accuracy": 0.2518493611297915}, "nb-NO": {"f1": 0.5762599854762065, "accuracy": 0.6089441829186281}, "ja-JP": {"f1": 0.6812287577191106, "accuracy": 0.722595830531271}, "el-GR": {"f1": 0.3576808341280282, "accuracy": 0.4206455951580363}, "ru-RU": {"f1": 0.5948774198119551, "accuracy": 0.6462676529926026}, "hi-IN": {"f1": 0.3497402578775116, "accuracy": 0.41627437794216543}, "th-TH": {"f1": 0.5688135569766731, "accuracy": 0.6012104909213181}, "es-ES": {"f1": 0.6303207074905762, "accuracy": 0.6503026227303296}, "bn-BD": {"f1": 0.2735257219332701, "accuracy": 0.3419636852723605}, "km-KH": {"f1": 0.3512312587345742, "accuracy": 0.4270342972427707}, "fa-IR": {"f1": 0.3606742263212146, "accuracy": 0.4546065904505716}, "ka-GE": {"f1": 0.29870717836255856, "accuracy": 0.37088096839273704}, "he-IL": {"f1": 0.26325427638766535, "accuracy": 0.34129119031607263}, "ml-IN": {"f1": 0.263205922589744, "accuracy": 0.3426361802286483}, "tl-PH": {"f1": 0.28616398592743164, "accuracy": 0.3312037659717552}, "hu-HU": {"f1": 0.502549605809005, "accuracy": 0.5578345662407532}, "fr-FR": {"f1": 0.5700652419709153, "accuracy": 0.6237390719569603}, "nl-NL": {"f1": 0.5899079309768159, "accuracy": 0.6664425016812374}, "ms-MY": {"f1": 0.4565061345514383, "accuracy": 0.5020174848688634}, "mn-MN": {"f1": 0.17246390916861104, "accuracy": 0.23974445191661062}, "my-MM": {"f1": 0.36951148228665637, "accuracy": 0.4515803631472764}, "pt-PT": {"f1": 0.6036112390423078, "accuracy": 0.6503026227303296}, "am-ET": {"f1": 0.05447030163787481, "accuracy": 0.11768661735036987}, "da-DK": {"f1": 0.5895826095778535, "accuracy": 0.6398789509078682}, "tr-TR": {"f1": 0.5267207017494162, "accuracy": 0.5773369199731002}, "sw-KE": {"f1": 0.17397436515400588, "accuracy": 0.22326832548755884}, "zh-CN": {"f1": 0.6645202599838983, "accuracy": 0.7128446536650975}, "zh-TW": {"f1": 0.6013482809493903, "accuracy": 0.6455951580363147}, "af-ZA": {"f1": 0.3850400639825205, "accuracy": 0.4317417619367855}, "ar-SA": {"f1": 0.3913181101264921, "accuracy": 0.4485541358439812}, "de-DE": {"f1": 0.6494786483376729, "accuracy": 0.6960322797579018}, "sl-SL": {"f1": 0.3317022390849141, "accuracy": 0.35339609952925355}, "sv-SE": {"f1": 0.5640574813223022, "accuracy": 0.6082716879623403}, "ta-IN": {"f1": 0.28746355177441557, "accuracy": 0.34431741761936785}, "kn-IN": {"f1": 0.22811403973902497, "accuracy": 0.304640215198386}, "az-AZ": {"f1": 0.3223982764643299, "accuracy": 0.38029589778076667}, "en-US": {"f1": 0.8398026278157933, "accuracy": 0.874915938130464}, "id-ID": {"f1": 0.6246564380732097, "accuracy": 0.6657700067249496}, "hy-AM": {"f1": 0.3266464817629327, "accuracy": 0.39475453934095495}, "cy-GB": {"f1": 0.08770451001029718, "accuracy": 0.1402151983860121}, "all": {"f1": 0.44637695378031256, "accuracy": 0.4690199679271636}}
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e64757b78f9755c3513c17bea2057f7b44530d569ef8166d453de072664c5f2
3
+ size 946915690
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:627198e96a6017b4f05e837092f1d9b52073c4217afe8ddfe8b99b2aae9e1005
3
+ size 4600