haryoaw commited on
Commit
a553e83
·
verified ·
1 Parent(s): 3e8459f

Initial Commit

Browse files
Files changed (5) hide show
  1. README.md +117 -117
  2. config.json +1 -1
  3. eval_results_ml.json +1 -0
  4. pytorch_model.bin +1 -1
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  license: mit
3
- base_model: microsoft/mdeberta-v3-base
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -18,11 +18,11 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # scenario-KD-PR-MSV-D2_data-AmazonScience_massive_all_1_144
20
 
21
- This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 1.5372
24
- - Accuracy: 0.8628
25
- - F1: 0.8443
26
 
27
  ## Model description
28
 
@@ -53,118 +53,118 @@ The following hyperparameters were used during training:
53
 
54
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
  |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|
56
- | 3.3933 | 0.27 | 5000 | 3.3770 | 0.7592 | 0.6735 |
57
- | 2.4971 | 0.53 | 10000 | 2.6953 | 0.8035 | 0.7540 |
58
- | 2.0927 | 0.8 | 15000 | 2.3912 | 0.8204 | 0.7848 |
59
- | 1.5883 | 1.07 | 20000 | 2.3109 | 0.8293 | 0.7958 |
60
- | 1.4485 | 1.34 | 25000 | 2.2594 | 0.8334 | 0.8011 |
61
- | 1.307 | 1.6 | 30000 | 2.1968 | 0.8378 | 0.8114 |
62
- | 1.2493 | 1.87 | 35000 | 2.1525 | 0.8409 | 0.8173 |
63
- | 0.9916 | 2.14 | 40000 | 2.1361 | 0.8424 | 0.8104 |
64
- | 0.9827 | 2.41 | 45000 | 2.1188 | 0.8429 | 0.8220 |
65
- | 0.944 | 2.67 | 50000 | 2.1135 | 0.8434 | 0.8169 |
66
- | 0.9152 | 2.94 | 55000 | 2.0101 | 0.8462 | 0.8247 |
67
- | 0.7317 | 3.21 | 60000 | 2.0755 | 0.8439 | 0.8213 |
68
- | 0.7081 | 3.47 | 65000 | 2.0258 | 0.8485 | 0.8280 |
69
- | 0.7277 | 3.74 | 70000 | 2.0031 | 0.8470 | 0.8284 |
70
- | 0.6924 | 4.01 | 75000 | 2.0036 | 0.8465 | 0.8244 |
71
- | 0.6096 | 4.28 | 80000 | 1.9999 | 0.8481 | 0.8309 |
72
- | 0.585 | 4.54 | 85000 | 1.9466 | 0.8514 | 0.8287 |
73
- | 0.6191 | 4.81 | 90000 | 1.9612 | 0.8472 | 0.8240 |
74
- | 0.5445 | 5.08 | 95000 | 1.9839 | 0.8480 | 0.8308 |
75
- | 0.5231 | 5.34 | 100000 | 1.9036 | 0.8531 | 0.8322 |
76
- | 0.5315 | 5.61 | 105000 | 1.9101 | 0.8528 | 0.8353 |
77
- | 0.5295 | 5.88 | 110000 | 1.9476 | 0.8482 | 0.8299 |
78
- | 0.4722 | 6.15 | 115000 | 1.9299 | 0.8497 | 0.8272 |
79
- | 0.4737 | 6.41 | 120000 | 1.8646 | 0.8523 | 0.8299 |
80
- | 0.4869 | 6.68 | 125000 | 1.8722 | 0.8535 | 0.8335 |
81
- | 0.4662 | 6.95 | 130000 | 1.8699 | 0.8515 | 0.8314 |
82
- | 0.4278 | 7.22 | 135000 | 1.8489 | 0.8533 | 0.8330 |
83
- | 0.4383 | 7.48 | 140000 | 1.8333 | 0.8549 | 0.8345 |
84
- | 0.4427 | 7.75 | 145000 | 1.8657 | 0.8549 | 0.8372 |
85
- | 0.415 | 8.02 | 150000 | 1.8319 | 0.8552 | 0.8347 |
86
- | 0.3984 | 8.28 | 155000 | 1.8365 | 0.8519 | 0.8322 |
87
- | 0.4037 | 8.55 | 160000 | 1.7974 | 0.8556 | 0.8393 |
88
- | 0.3978 | 8.82 | 165000 | 1.7839 | 0.8570 | 0.8372 |
89
- | 0.3899 | 9.09 | 170000 | 1.7743 | 0.8568 | 0.8383 |
90
- | 0.3772 | 9.35 | 175000 | 1.7579 | 0.8584 | 0.8381 |
91
- | 0.3828 | 9.62 | 180000 | 1.7751 | 0.8555 | 0.8357 |
92
- | 0.3857 | 9.89 | 185000 | 1.7670 | 0.8588 | 0.8409 |
93
- | 0.3606 | 10.15 | 190000 | 1.7508 | 0.8574 | 0.8405 |
94
- | 0.3568 | 10.42 | 195000 | 1.7329 | 0.8585 | 0.8404 |
95
- | 0.3555 | 10.69 | 200000 | 1.7450 | 0.8574 | 0.8359 |
96
- | 0.3589 | 10.96 | 205000 | 1.7490 | 0.8581 | 0.8373 |
97
- | 0.3229 | 11.22 | 210000 | 1.7103 | 0.8586 | 0.8395 |
98
- | 0.3433 | 11.49 | 215000 | 1.7174 | 0.8571 | 0.8372 |
99
- | 0.3441 | 11.76 | 220000 | 1.6939 | 0.8571 | 0.8379 |
100
- | 0.3307 | 12.03 | 225000 | 1.6927 | 0.8593 | 0.8413 |
101
- | 0.3356 | 12.29 | 230000 | 1.7138 | 0.8575 | 0.8374 |
102
- | 0.3185 | 12.56 | 235000 | 1.7078 | 0.8579 | 0.8376 |
103
- | 0.3291 | 12.83 | 240000 | 1.6861 | 0.8592 | 0.8420 |
104
- | 0.3198 | 13.09 | 245000 | 1.6635 | 0.8601 | 0.8415 |
105
- | 0.3152 | 13.36 | 250000 | 1.6871 | 0.8589 | 0.8396 |
106
- | 0.3158 | 13.63 | 255000 | 1.6959 | 0.8578 | 0.8380 |
107
- | 0.3108 | 13.9 | 260000 | 1.6792 | 0.8585 | 0.8398 |
108
- | 0.3032 | 14.16 | 265000 | 1.6630 | 0.8605 | 0.8417 |
109
- | 0.2983 | 14.43 | 270000 | 1.6545 | 0.8599 | 0.8416 |
110
- | 0.2942 | 14.7 | 275000 | 1.6757 | 0.8597 | 0.8414 |
111
- | 0.3039 | 14.96 | 280000 | 1.6613 | 0.8585 | 0.8409 |
112
- | 0.2865 | 15.23 | 285000 | 1.6440 | 0.8584 | 0.8413 |
113
- | 0.2989 | 15.5 | 290000 | 1.6612 | 0.8579 | 0.8396 |
114
- | 0.2875 | 15.77 | 295000 | 1.6469 | 0.8594 | 0.8394 |
115
- | 0.2774 | 16.03 | 300000 | 1.6531 | 0.8589 | 0.8432 |
116
- | 0.2783 | 16.3 | 305000 | 1.6534 | 0.8603 | 0.8424 |
117
- | 0.2789 | 16.57 | 310000 | 1.6438 | 0.8589 | 0.8390 |
118
- | 0.2819 | 16.84 | 315000 | 1.6277 | 0.8598 | 0.8394 |
119
- | 0.2759 | 17.1 | 320000 | 1.6124 | 0.8605 | 0.8426 |
120
- | 0.2725 | 17.37 | 325000 | 1.6262 | 0.8616 | 0.8437 |
121
- | 0.2678 | 17.64 | 330000 | 1.6184 | 0.8599 | 0.8416 |
122
- | 0.2778 | 17.9 | 335000 | 1.6167 | 0.8611 | 0.8418 |
123
- | 0.2608 | 18.17 | 340000 | 1.6083 | 0.8593 | 0.8406 |
124
- | 0.2587 | 18.44 | 345000 | 1.6272 | 0.8589 | 0.8401 |
125
- | 0.2688 | 18.71 | 350000 | 1.6189 | 0.8599 | 0.8412 |
126
- | 0.2651 | 18.97 | 355000 | 1.6063 | 0.8602 | 0.8427 |
127
- | 0.2548 | 19.24 | 360000 | 1.6051 | 0.8608 | 0.8431 |
128
- | 0.2512 | 19.51 | 365000 | 1.6080 | 0.8616 | 0.8423 |
129
- | 0.2524 | 19.77 | 370000 | 1.5972 | 0.8606 | 0.8435 |
130
- | 0.2463 | 20.04 | 375000 | 1.6055 | 0.8603 | 0.8427 |
131
- | 0.2413 | 20.31 | 380000 | 1.5884 | 0.8605 | 0.8428 |
132
- | 0.2376 | 20.58 | 385000 | 1.5853 | 0.8618 | 0.8451 |
133
- | 0.2467 | 20.84 | 390000 | 1.5844 | 0.8617 | 0.8428 |
134
- | 0.2427 | 21.11 | 395000 | 1.5759 | 0.8614 | 0.8438 |
135
- | 0.2427 | 21.38 | 400000 | 1.5848 | 0.8623 | 0.8440 |
136
- | 0.2367 | 21.65 | 405000 | 1.5765 | 0.8609 | 0.8439 |
137
- | 0.237 | 21.91 | 410000 | 1.5633 | 0.8623 | 0.8434 |
138
- | 0.2323 | 22.18 | 415000 | 1.5769 | 0.8616 | 0.8430 |
139
- | 0.2327 | 22.45 | 420000 | 1.5757 | 0.8622 | 0.8429 |
140
- | 0.2334 | 22.71 | 425000 | 1.5629 | 0.8612 | 0.8432 |
141
- | 0.2302 | 22.98 | 430000 | 1.5771 | 0.8609 | 0.8432 |
142
- | 0.2275 | 23.25 | 435000 | 1.5643 | 0.8621 | 0.8438 |
143
- | 0.2283 | 23.52 | 440000 | 1.5670 | 0.8619 | 0.8442 |
144
- | 0.2273 | 23.78 | 445000 | 1.5637 | 0.8620 | 0.8435 |
145
- | 0.2192 | 24.05 | 450000 | 1.5571 | 0.8616 | 0.8433 |
146
- | 0.2254 | 24.32 | 455000 | 1.5624 | 0.8610 | 0.8417 |
147
- | 0.2239 | 24.58 | 460000 | 1.5502 | 0.8615 | 0.8432 |
148
- | 0.226 | 24.85 | 465000 | 1.5507 | 0.8628 | 0.8448 |
149
- | 0.2231 | 25.12 | 470000 | 1.5507 | 0.8622 | 0.8447 |
150
- | 0.2188 | 25.39 | 475000 | 1.5468 | 0.8625 | 0.8450 |
151
- | 0.219 | 25.65 | 480000 | 1.5514 | 0.8622 | 0.8444 |
152
- | 0.2238 | 25.92 | 485000 | 1.5513 | 0.8624 | 0.8447 |
153
- | 0.2183 | 26.19 | 490000 | 1.5414 | 0.8622 | 0.8447 |
154
- | 0.2142 | 26.46 | 495000 | 1.5383 | 0.8627 | 0.8438 |
155
- | 0.2225 | 26.72 | 500000 | 1.5409 | 0.8628 | 0.8449 |
156
- | 0.2183 | 26.99 | 505000 | 1.5375 | 0.8624 | 0.8447 |
157
- | 0.2163 | 27.26 | 510000 | 1.5429 | 0.8622 | 0.8444 |
158
- | 0.214 | 27.52 | 515000 | 1.5422 | 0.8617 | 0.8432 |
159
- | 0.2116 | 27.79 | 520000 | 1.5351 | 0.8626 | 0.8437 |
160
- | 0.2132 | 28.06 | 525000 | 1.5360 | 0.8626 | 0.8446 |
161
- | 0.2089 | 28.33 | 530000 | 1.5372 | 0.8625 | 0.8440 |
162
- | 0.2095 | 28.59 | 535000 | 1.5375 | 0.8625 | 0.8443 |
163
- | 0.2097 | 28.86 | 540000 | 1.5329 | 0.8632 | 0.8460 |
164
- | 0.2141 | 29.13 | 545000 | 1.5331 | 0.8626 | 0.8455 |
165
- | 0.2078 | 29.39 | 550000 | 1.5318 | 0.8624 | 0.8450 |
166
- | 0.2051 | 29.66 | 555000 | 1.5388 | 0.8627 | 0.8446 |
167
- | 0.2068 | 29.93 | 560000 | 1.5372 | 0.8628 | 0.8443 |
168
 
169
 
170
  ### Framework versions
 
1
  ---
2
  license: mit
3
+ base_model: haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
18
 
19
  # scenario-KD-PR-MSV-D2_data-AmazonScience_massive_all_1_144
20
 
21
+ This model is a fine-tuned version of [haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1](https://huggingface.co/haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1) on the massive dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 1.4509
24
+ - Accuracy: 0.8576
25
+ - F1: 0.8345
26
 
27
  ## Model description
28
 
 
53
 
54
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
  |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|
56
+ | 1.4358 | 0.27 | 5000 | 1.5925 | 0.8182 | 0.7743 |
57
+ | 1.291 | 0.53 | 10000 | 1.5425 | 0.8257 | 0.7947 |
58
+ | 1.207 | 0.8 | 15000 | 1.4865 | 0.8367 | 0.8041 |
59
+ | 1.0927 | 1.07 | 20000 | 1.4621 | 0.8439 | 0.8136 |
60
+ | 1.0824 | 1.34 | 25000 | 1.4744 | 0.8388 | 0.8066 |
61
+ | 1.0564 | 1.6 | 30000 | 1.4548 | 0.8454 | 0.8143 |
62
+ | 1.0461 | 1.87 | 35000 | 1.4542 | 0.8452 | 0.8125 |
63
+ | 0.9801 | 2.14 | 40000 | 1.4552 | 0.8461 | 0.8179 |
64
+ | 0.9812 | 2.41 | 45000 | 1.4601 | 0.8467 | 0.8224 |
65
+ | 0.9878 | 2.67 | 50000 | 1.4641 | 0.8454 | 0.8238 |
66
+ | 0.9767 | 2.94 | 55000 | 1.4509 | 0.8480 | 0.8259 |
67
+ | 0.9201 | 3.21 | 60000 | 1.4822 | 0.8429 | 0.8192 |
68
+ | 0.9235 | 3.47 | 65000 | 1.4676 | 0.8451 | 0.8237 |
69
+ | 0.9299 | 3.74 | 70000 | 1.4711 | 0.8456 | 0.8216 |
70
+ | 0.9204 | 4.01 | 75000 | 1.4883 | 0.8425 | 0.8188 |
71
+ | 0.8934 | 4.28 | 80000 | 1.4950 | 0.8425 | 0.8188 |
72
+ | 0.8967 | 4.54 | 85000 | 1.4874 | 0.8444 | 0.8193 |
73
+ | 0.9039 | 4.81 | 90000 | 1.4726 | 0.8480 | 0.8238 |
74
+ | 0.8764 | 5.08 | 95000 | 1.4938 | 0.8446 | 0.8197 |
75
+ | 0.8737 | 5.34 | 100000 | 1.4776 | 0.8484 | 0.8282 |
76
+ | 0.8766 | 5.61 | 105000 | 1.4764 | 0.8488 | 0.8257 |
77
+ | 0.8836 | 5.88 | 110000 | 1.4775 | 0.8464 | 0.8221 |
78
+ | 0.861 | 6.15 | 115000 | 1.4765 | 0.8486 | 0.8244 |
79
+ | 0.8595 | 6.41 | 120000 | 1.4726 | 0.8502 | 0.8276 |
80
+ | 0.8687 | 6.68 | 125000 | 1.4702 | 0.8502 | 0.8230 |
81
+ | 0.8641 | 6.95 | 130000 | 1.4841 | 0.8480 | 0.8272 |
82
+ | 0.8474 | 7.22 | 135000 | 1.4871 | 0.8485 | 0.8229 |
83
+ | 0.8503 | 7.48 | 140000 | 1.4910 | 0.8456 | 0.8181 |
84
+ | 0.8548 | 7.75 | 145000 | 1.4877 | 0.8484 | 0.8223 |
85
+ | 0.8404 | 8.02 | 150000 | 1.4682 | 0.8509 | 0.8275 |
86
+ | 0.8481 | 8.28 | 155000 | 1.4994 | 0.8471 | 0.8226 |
87
+ | 0.8427 | 8.55 | 160000 | 1.4933 | 0.8476 | 0.8240 |
88
+ | 0.8418 | 8.82 | 165000 | 1.4812 | 0.8484 | 0.8201 |
89
+ | 0.8323 | 9.09 | 170000 | 1.4808 | 0.8500 | 0.8254 |
90
+ | 0.8353 | 9.35 | 175000 | 1.4962 | 0.8462 | 0.8196 |
91
+ | 0.8331 | 9.62 | 180000 | 1.4947 | 0.8459 | 0.8219 |
92
+ | 0.8384 | 9.89 | 185000 | 1.4916 | 0.8476 | 0.8228 |
93
+ | 0.8202 | 10.15 | 190000 | 1.4909 | 0.8476 | 0.8232 |
94
+ | 0.8308 | 10.42 | 195000 | 1.4897 | 0.8498 | 0.8233 |
95
+ | 0.8283 | 10.69 | 200000 | 1.4882 | 0.8476 | 0.8246 |
96
+ | 0.8303 | 10.96 | 205000 | 1.4837 | 0.8477 | 0.8228 |
97
+ | 0.8154 | 11.22 | 210000 | 1.4930 | 0.8489 | 0.8233 |
98
+ | 0.8269 | 11.49 | 215000 | 1.5044 | 0.8454 | 0.8191 |
99
+ | 0.8172 | 11.76 | 220000 | 1.4946 | 0.8484 | 0.8237 |
100
+ | 0.8071 | 12.03 | 225000 | 1.4824 | 0.8513 | 0.8271 |
101
+ | 0.8124 | 12.29 | 230000 | 1.4778 | 0.8514 | 0.8262 |
102
+ | 0.8187 | 12.56 | 235000 | 1.4866 | 0.8478 | 0.8236 |
103
+ | 0.8153 | 12.83 | 240000 | 1.5002 | 0.8469 | 0.8257 |
104
+ | 0.8117 | 13.09 | 245000 | 1.4883 | 0.8492 | 0.8235 |
105
+ | 0.807 | 13.36 | 250000 | 1.4906 | 0.8511 | 0.8293 |
106
+ | 0.8151 | 13.63 | 255000 | 1.4702 | 0.8526 | 0.8295 |
107
+ | 0.8107 | 13.9 | 260000 | 1.4772 | 0.8513 | 0.8237 |
108
+ | 0.8012 | 14.16 | 265000 | 1.4784 | 0.8518 | 0.8245 |
109
+ | 0.8039 | 14.43 | 270000 | 1.4933 | 0.8485 | 0.8258 |
110
+ | 0.8031 | 14.7 | 275000 | 1.4811 | 0.8519 | 0.8252 |
111
+ | 0.8058 | 14.96 | 280000 | 1.4802 | 0.8508 | 0.8263 |
112
+ | 0.8014 | 15.23 | 285000 | 1.4919 | 0.8498 | 0.8240 |
113
+ | 0.8002 | 15.5 | 290000 | 1.4780 | 0.8515 | 0.8247 |
114
+ | 0.8043 | 15.77 | 295000 | 1.4755 | 0.8519 | 0.8237 |
115
+ | 0.7967 | 16.03 | 300000 | 1.4765 | 0.8516 | 0.8296 |
116
+ | 0.7958 | 16.3 | 305000 | 1.4910 | 0.8509 | 0.8260 |
117
+ | 0.8032 | 16.57 | 310000 | 1.4795 | 0.8499 | 0.8221 |
118
+ | 0.8002 | 16.84 | 315000 | 1.4864 | 0.8497 | 0.8235 |
119
+ | 0.7938 | 17.1 | 320000 | 1.4832 | 0.8509 | 0.8280 |
120
+ | 0.7981 | 17.37 | 325000 | 1.4866 | 0.8508 | 0.8285 |
121
+ | 0.798 | 17.64 | 330000 | 1.4922 | 0.8496 | 0.8274 |
122
+ | 0.8004 | 17.9 | 335000 | 1.4848 | 0.8505 | 0.8278 |
123
+ | 0.7899 | 18.17 | 340000 | 1.4919 | 0.8490 | 0.8244 |
124
+ | 0.7961 | 18.44 | 345000 | 1.4764 | 0.8522 | 0.8300 |
125
+ | 0.793 | 18.71 | 350000 | 1.4795 | 0.8522 | 0.8279 |
126
+ | 0.7933 | 18.97 | 355000 | 1.4845 | 0.8511 | 0.8257 |
127
+ | 0.788 | 19.24 | 360000 | 1.4814 | 0.8508 | 0.8272 |
128
+ | 0.787 | 19.51 | 365000 | 1.4739 | 0.8524 | 0.8282 |
129
+ | 0.7911 | 19.77 | 370000 | 1.4788 | 0.8514 | 0.8305 |
130
+ | 0.7843 | 20.04 | 375000 | 1.4762 | 0.8533 | 0.8285 |
131
+ | 0.7859 | 20.31 | 380000 | 1.4777 | 0.8525 | 0.8299 |
132
+ | 0.7846 | 20.58 | 385000 | 1.4696 | 0.8524 | 0.8309 |
133
+ | 0.7857 | 20.84 | 390000 | 1.4812 | 0.8519 | 0.8267 |
134
+ | 0.7861 | 21.11 | 395000 | 1.4924 | 0.8491 | 0.8241 |
135
+ | 0.7845 | 21.38 | 400000 | 1.4847 | 0.8511 | 0.8253 |
136
+ | 0.7847 | 21.65 | 405000 | 1.4748 | 0.8527 | 0.8277 |
137
+ | 0.785 | 21.91 | 410000 | 1.4794 | 0.8530 | 0.8281 |
138
+ | 0.7816 | 22.18 | 415000 | 1.4764 | 0.8529 | 0.8268 |
139
+ | 0.7845 | 22.45 | 420000 | 1.4738 | 0.8529 | 0.8288 |
140
+ | 0.7807 | 22.71 | 425000 | 1.4864 | 0.8511 | 0.8278 |
141
+ | 0.7809 | 22.98 | 430000 | 1.4782 | 0.8509 | 0.8259 |
142
+ | 0.7761 | 23.25 | 435000 | 1.4829 | 0.8527 | 0.8281 |
143
+ | 0.7815 | 23.52 | 440000 | 1.4627 | 0.8541 | 0.8298 |
144
+ | 0.7833 | 23.78 | 445000 | 1.4756 | 0.8532 | 0.8293 |
145
+ | 0.7786 | 24.05 | 450000 | 1.4612 | 0.8556 | 0.8318 |
146
+ | 0.7826 | 24.32 | 455000 | 1.4582 | 0.8553 | 0.8304 |
147
+ | 0.7821 | 24.58 | 460000 | 1.4614 | 0.8562 | 0.8323 |
148
+ | 0.7793 | 24.85 | 465000 | 1.4600 | 0.8564 | 0.8319 |
149
+ | 0.7763 | 25.12 | 470000 | 1.4650 | 0.8549 | 0.8311 |
150
+ | 0.776 | 25.39 | 475000 | 1.4658 | 0.8553 | 0.8285 |
151
+ | 0.7796 | 25.65 | 480000 | 1.4572 | 0.8560 | 0.8308 |
152
+ | 0.7794 | 25.92 | 485000 | 1.4638 | 0.8545 | 0.8302 |
153
+ | 0.7747 | 26.19 | 490000 | 1.4541 | 0.8565 | 0.8329 |
154
+ | 0.7761 | 26.46 | 495000 | 1.4596 | 0.8553 | 0.8283 |
155
+ | 0.7754 | 26.72 | 500000 | 1.4622 | 0.8566 | 0.8325 |
156
+ | 0.7769 | 26.99 | 505000 | 1.4665 | 0.8544 | 0.8303 |
157
+ | 0.777 | 27.26 | 510000 | 1.4622 | 0.8557 | 0.8300 |
158
+ | 0.7741 | 27.52 | 515000 | 1.4599 | 0.8562 | 0.8321 |
159
+ | 0.7747 | 27.79 | 520000 | 1.4575 | 0.8558 | 0.8301 |
160
+ | 0.7764 | 28.06 | 525000 | 1.4513 | 0.8565 | 0.8310 |
161
+ | 0.7731 | 28.33 | 530000 | 1.4551 | 0.8562 | 0.8322 |
162
+ | 0.7752 | 28.59 | 535000 | 1.4530 | 0.8568 | 0.8322 |
163
+ | 0.7729 | 28.86 | 540000 | 1.4563 | 0.8562 | 0.8323 |
164
+ | 0.7751 | 29.13 | 545000 | 1.4548 | 0.8567 | 0.8332 |
165
+ | 0.7742 | 29.39 | 550000 | 1.4494 | 0.8569 | 0.8333 |
166
+ | 0.7725 | 29.66 | 555000 | 1.4496 | 0.8576 | 0.8342 |
167
+ | 0.7756 | 29.93 | 560000 | 1.4509 | 0.8576 | 0.8345 |
168
 
169
 
170
  ### Framework versions
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "microsoft/mdeberta-v3-base",
3
  "architectures": [
4
  "DebertaForSequenceClassificationKD"
5
  ],
 
1
  {
2
+ "_name_or_path": "haryoaw/scenario-MDBT-TCR_data-AmazonScience_massive_all_1_1",
3
  "architectures": [
4
  "DebertaForSequenceClassificationKD"
5
  ],
eval_results_ml.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"hu-HU": {"f1": 0.819933232170676, "accuracy": 0.8651647612642905}, "nb-NO": {"f1": 0.8316480387820728, "accuracy": 0.8759246805648958}, "am-ET": {"f1": 0.7877418769735098, "accuracy": 0.8362474781439139}, "nl-NL": {"f1": 0.835397085852945, "accuracy": 0.8739071956960323}, "th-TH": {"f1": 0.8154741899771817, "accuracy": 0.8500336247478144}, "cy-GB": {"f1": 0.801259035695017, "accuracy": 0.8449899125756557}, "af-ZA": {"f1": 0.8237981688982629, "accuracy": 0.8665097511768661}, "zh-TW": {"f1": 0.8047766186150422, "accuracy": 0.8443174176193678}, "ar-SA": {"f1": 0.7547374106227429, "accuracy": 0.8140551445864156}, "es-ES": {"f1": 0.8345776006549257, "accuracy": 0.8678547410894418}, "jv-ID": {"f1": 0.8273625740282922, "accuracy": 0.8507061197041023}, "ko-KR": {"f1": 0.8253642204784468, "accuracy": 0.8587760591795561}, "tl-PH": {"f1": 0.8147491884923039, "accuracy": 0.8496973772696704}, "az-AZ": {"f1": 0.8300838571461994, "accuracy": 0.8695359784801614}, "ru-RU": {"f1": 0.8226257200617049, "accuracy": 0.8725622057834567}, "km-KH": {"f1": 0.7409561470266588, "accuracy": 0.788836583725622}, "en-US": {"f1": 0.8517609451133549, "accuracy": 0.8809683927370545}, "ro-RO": {"f1": 0.8258447999424111, "accuracy": 0.8685272360457297}, "ka-GE": {"f1": 0.774237585901848, "accuracy": 0.812373907195696}, "kn-IN": {"f1": 0.8082615546895642, "accuracy": 0.8500336247478144}, "ta-IN": {"f1": 0.814389494444278, "accuracy": 0.8473436449226631}, "bn-BD": {"f1": 0.8220033430074037, "accuracy": 0.8564223268325487}, "sq-AL": {"f1": 0.8328438623663283, "accuracy": 0.8618022864828514}, "hi-IN": {"f1": 0.8166630899458551, "accuracy": 0.8661735036987223}, "ja-JP": {"f1": 0.8277010825180356, "accuracy": 0.8722259583053127}, "ca-ES": {"f1": 0.8261754875074802, "accuracy": 0.8621385339609953}, "sw-KE": {"f1": 0.8057922255187477, "accuracy": 0.8453261600537996}, "he-IL": {"f1": 0.8144983073998547, "accuracy": 0.8567585743106927}, "is-IS": {"f1": 0.8224798096993304, "accuracy": 0.8628110289172831}, "lv-LV": {"f1": 0.8344484096127053, "accuracy": 0.8648285137861466}, "tr-TR": {"f1": 0.8215463484053133, "accuracy": 0.8705447209145931}, "ms-MY": {"f1": 0.8305192128984679, "accuracy": 0.867518493611298}, "sv-SE": {"f1": 0.8335229779749522, "accuracy": 0.8802958977807667}, "mn-MN": {"f1": 0.8177931341955639, "accuracy": 0.855749831876261}, "my-MM": {"f1": 0.8050034092996498, "accuracy": 0.8533960995292535}, "zh-CN": {"f1": 0.8221620979200096, "accuracy": 0.8601210490921318}, "pl-PL": {"f1": 0.8299882562993388, "accuracy": 0.8651647612642905}, "de-DE": {"f1": 0.8207845828742469, "accuracy": 0.8584398117014123}, "pt-PT": {"f1": 0.8318561721546732, "accuracy": 0.8695359784801614}, "ml-IN": {"f1": 0.826495539805997, "accuracy": 0.8614660390047074}, "it-IT": {"f1": 0.8240901599799229, "accuracy": 0.871217215870881}, "fa-IR": {"f1": 0.8232265478971749, "accuracy": 0.8644922663080027}, "el-GR": {"f1": 0.8283629472840042, "accuracy": 0.863483523873571}, "fr-FR": {"f1": 0.8346830636165462, "accuracy": 0.8715534633490248}, "sl-SL": {"f1": 0.8032543990339767, "accuracy": 0.8607935440484197}, "hy-AM": {"f1": 0.8206278043351998, "accuracy": 0.8564223268325487}, "vi-VN": {"f1": 0.8301429483111661, "accuracy": 0.8651647612642905}, "da-DK": {"f1": 0.8301884505887763, "accuracy": 0.8796234028244788}, "te-IN": {"f1": 0.8148088111473094, "accuracy": 0.8544048419636853}, "ur-PK": {"f1": 0.8017720239245238, "accuracy": 0.8463349024882313}, "id-ID": {"f1": 0.8326779507563338, "accuracy": 0.8715534633490248}, "fi-FI": {"f1": 0.8050021829115123, "accuracy": 0.8523873570948218}, "all": {"f1": 0.8177859048559307, "accuracy": 0.8579871708654493}}
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5ac681f0dd3dd0e2572ca29a108bbd996f2a758d22dba62274209337b6e6ddd3
3
  size 946915690
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2cf8788eafcdfa43a72b68e7f8aef2d96315197e110d1a5421d468c405d3fce
3
  size 946915690
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4480a5f318e0d7def38dd7b6d2334ff5a67af49e10717b2abf4a693574e964ba
3
  size 4600
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10da6028fa1ac4b750ba04fe8fd1140160605c8be05d69b203ea2501cc4198de
3
  size 4600