harshiv commited on
Commit
7b8671c
1 Parent(s): 1e506c5

Upload Untitled1.ipynb

Browse files
Files changed (1) hide show
  1. Untitled1.ipynb +96 -0
Untitled1.ipynb ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 17,
6
+ "id": "2e314513",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "Accuracy: 0.8417508417508418\n"
14
+ ]
15
+ }
16
+ ],
17
+ "source": [
18
+ "import pandas as pd\n",
19
+ "from sklearn.model_selection import train_test_split\n",
20
+ "from sklearn.ensemble import RandomForestClassifier\n",
21
+ "from sklearn.metrics import accuracy_score, classification_report\n",
22
+ "\n",
23
+ "# Load the dataset\n",
24
+ "df = pd.read_csv('dataset.csv')\n",
25
+ "\n",
26
+ "# Split the dataset into features and target variable\n",
27
+ "X = df.drop('PlacedOrNot', axis=1) # Features\n",
28
+ "y = df['PlacedOrNot'] # Target variable\n",
29
+ "\n",
30
+ "# Convert categorical features to numerical using one-hot encoding\n",
31
+ "X = pd.get_dummies(X)\n",
32
+ "\n",
33
+ "# Split the dataset into training and testing sets\n",
34
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
35
+ "\n",
36
+ "# Create a Random Forest Classifier\n",
37
+ "clf = RandomForestClassifier(n_estimators=100, random_state=42)\n",
38
+ "\n",
39
+ "# Train the model\n",
40
+ "clf.fit(X_train, y_train)\n",
41
+ "\n",
42
+ "accuracy = clf.score(X_test, y_test)\n",
43
+ "print('Accuracy:', accuracy)\n",
44
+ "\n",
45
+ "# Export the trained model as a pickle file\n",
46
+ "with open('random_forest_model.pkl', 'wb') as f:\n",
47
+ " pickle.dump(clf, f)"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "code",
52
+ "execution_count": null,
53
+ "id": "ad204a75",
54
+ "metadata": {},
55
+ "outputs": [],
56
+ "source": []
57
+ },
58
+ {
59
+ "cell_type": "code",
60
+ "execution_count": null,
61
+ "id": "11ad2756",
62
+ "metadata": {},
63
+ "outputs": [],
64
+ "source": []
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "execution_count": null,
69
+ "id": "913f5ce2",
70
+ "metadata": {},
71
+ "outputs": [],
72
+ "source": []
73
+ }
74
+ ],
75
+ "metadata": {
76
+ "kernelspec": {
77
+ "display_name": "Python 3 (ipykernel)",
78
+ "language": "python",
79
+ "name": "python3"
80
+ },
81
+ "language_info": {
82
+ "codemirror_mode": {
83
+ "name": "ipython",
84
+ "version": 3
85
+ },
86
+ "file_extension": ".py",
87
+ "mimetype": "text/x-python",
88
+ "name": "python",
89
+ "nbconvert_exporter": "python",
90
+ "pygments_lexer": "ipython3",
91
+ "version": "3.9.12"
92
+ }
93
+ },
94
+ "nbformat": 4,
95
+ "nbformat_minor": 5
96
+ }