prediction / placement.py
harshiv's picture
Upload placement.py
08f8975
raw
history blame
2.08 kB
import pandas as pd
from flask import Flask, request, jsonify
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, StandardScaler
# Load the CSV data
data = pd.read_csv('dataset.csv')
# Split the data into features and labels
X = data.drop('PlacedOrNot', axis=1)
y = data['PlacedOrNot']
# Encode categorical features
categorical_features = ['HistoryOfBacklogs']
for feature in categorical_features:
encoder = LabelEncoder()
X[feature] = encoder.fit_transform(X[feature])
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create the pipeline
numerical_features = ['Internships', 'CGPA']
numerical_transformer = StandardScaler()
categorical_features = [ 'HistoryOfBacklogs']
categorical_transformer = SimpleImputer(strategy='most_frequent')
preprocessor = ColumnTransformer(
transformers=[
('num', numerical_transformer, numerical_features),
('cat', categorical_transformer, categorical_features)
])
pipeline = Pipeline([
('preprocessor', preprocessor),
('classifier', RandomForestClassifier(random_state=42))
])
# Train the model
pipeline.fit(X_train, y_train)
# Evaluate the model
accuracy = pipeline.score(X_test, y_test)
print('Accuracy:', accuracy)
# Create Flask app
app = Flask(__name__)
# Define API route for making predictions
@app.route('/predict', methods=['POST'])
def predict():
# Get input data from request
data = request.get_json()
# Convert input data to dataframe
input_data = pd.DataFrame(data, index=[0])
# Make predictions using the trained pipeline
predictions = pipeline.predict(input_data)
# Prepare response
response = {'prediction': predictions[0]}
return jsonify(response)
# Run the Flask app
if __name__ == '__main__':
app.run(debug=True)