harshit345
commited on
Commit
•
1e98c78
1
Parent(s):
8036347
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
- cer
|
8 |
+
tags:
|
9 |
+
- audio
|
10 |
+
- automatic-speech-recognition
|
11 |
+
- speech
|
12 |
+
- xlsr-fine-tuning-week
|
13 |
+
license: apache-2.0
|
14 |
+
model-index:
|
15 |
+
- name: Wav2Vec2 English by Jonatas Grosman
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Speech Recognition
|
19 |
+
type: automatic-speech-recognition
|
20 |
+
dataset:
|
21 |
+
name: Common Voice en
|
22 |
+
type: common_voice
|
23 |
+
args: en
|
24 |
+
metrics:
|
25 |
+
- name: Test WER
|
26 |
+
type: wer
|
27 |
+
value: 21.53
|
28 |
+
- name: Test CER
|
29 |
+
type: cer
|
30 |
+
value: 9.66
|
31 |
+
---
|
32 |
+
|
33 |
+
# Wav2vec2-Large-English
|
34 |
+
|
35 |
+
Fine-tuned [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on English using the [Common Voice](https://huggingface.co/datasets/common_voice).
|
36 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
37 |
+
|
38 |
+
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
|
39 |
+
|
40 |
+
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
|
41 |
+
|
42 |
+
## Usage
|
43 |
+
|
44 |
+
The model can be used directly (without a language model) as follows...
|
45 |
+
|
46 |
+
Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library:
|
47 |
+
|
48 |
+
```python
|
49 |
+
from asrecognition import ASREngine
|
50 |
+
|
51 |
+
asr = ASREngine("fr", model_path="jonatasgrosman/wav2vec2-large-english")
|
52 |
+
|
53 |
+
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
|
54 |
+
transcriptions = asr.transcribe(audio_paths)
|
55 |
+
```
|
56 |
+
|
57 |
+
Writing your own inference script:
|
58 |
+
|
59 |
+
```python
|
60 |
+
import torch
|
61 |
+
import librosa
|
62 |
+
from datasets import load_dataset
|
63 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
64 |
+
|
65 |
+
LANG_ID = "en"
|
66 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-english"
|
67 |
+
SAMPLES = 10
|
68 |
+
|
69 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
70 |
+
|
71 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
72 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
73 |
+
|
74 |
+
# Preprocessing the datasets.
|
75 |
+
# We need to read the audio files as arrays
|
76 |
+
def speech_file_to_array_fn(batch):
|
77 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
78 |
+
batch["speech"] = speech_array
|
79 |
+
batch["sentence"] = batch["sentence"].upper()
|
80 |
+
return batch
|
81 |
+
|
82 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
83 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
84 |
+
|
85 |
+
with torch.no_grad():
|
86 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
87 |
+
|
88 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
89 |
+
predicted_sentences = processor.batch_decode(predicted_ids)
|
90 |
+
|
91 |
+
for i, predicted_sentence in enumerate(predicted_sentences):
|
92 |
+
print("-" * 100)
|
93 |
+
print("Reference:", test_dataset[i]["sentence"])
|
94 |
+
print("Prediction:", predicted_sentence)
|
95 |
+
```
|
96 |
+
|
97 |
+
| Reference | Prediction |
|
98 |
+
| ------------- | ------------- |
|
99 |
+
| "SHE'LL BE ALL RIGHT." | SHELL BE ALL RIGHT |
|
100 |
+
| SIX | SIX |
|
101 |
+
| "ALL'S WELL THAT ENDS WELL." | ALLAS WELL THAT ENDS WELL |
|
102 |
+
| DO YOU MEAN IT? | W MEAN IT |
|
103 |
+
| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESTION |
|
104 |
+
| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSILLA GOING TO BANDL AND BE WHIT IS LIKE QU AND QU |
|
105 |
+
| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTION AS HAME AK AN THE POT |
|
106 |
+
| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
|
107 |
+
| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUCE IS SAUCE FOR THE GONDER |
|
108 |
+
| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |
|
109 |
+
|
110 |
+
## Evaluation
|
111 |
+
|
112 |
+
The model can be evaluated as follows on the English (en) test data of Common Voice.
|
113 |
+
|
114 |
+
```python
|
115 |
+
import torch
|
116 |
+
import re
|
117 |
+
import librosa
|
118 |
+
from datasets import load_dataset, load_metric
|
119 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
120 |
+
|
121 |
+
LANG_ID = "en"
|
122 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-english"
|
123 |
+
DEVICE = "cuda"
|
124 |
+
|
125 |
+
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
|
126 |
+
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
127 |
+
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
|
128 |
+
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
|
129 |
+
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
|
130 |
+
|
131 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
132 |
+
|
133 |
+
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
|
134 |
+
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
|
135 |
+
|
136 |
+
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
|
137 |
+
|
138 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
139 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
140 |
+
model.to(DEVICE)
|
141 |
+
|
142 |
+
# Preprocessing the datasets.
|
143 |
+
# We need to read the audio files as arrays
|
144 |
+
def speech_file_to_array_fn(batch):
|
145 |
+
with warnings.catch_warnings():
|
146 |
+
warnings.simplefilter("ignore")
|
147 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
148 |
+
batch["speech"] = speech_array
|
149 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
|
150 |
+
return batch
|
151 |
+
|
152 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
153 |
+
|
154 |
+
# Preprocessing the datasets.
|
155 |
+
# We need to read the audio files as arrays
|
156 |
+
def evaluate(batch):
|
157 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
158 |
+
|
159 |
+
with torch.no_grad():
|
160 |
+
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
|
161 |
+
|
162 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
163 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
164 |
+
return batch
|
165 |
+
|
166 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
167 |
+
|
168 |
+
predictions = [x.upper() for x in result["pred_strings"]]
|
169 |
+
references = [x.upper() for x in result["sentence"]]
|
170 |
+
|
171 |
+
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
172 |
+
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
173 |
+
```
|
174 |
+
|
175 |
+
**Test Result**:
|
176 |
+
|
177 |
+
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-06-17). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
|
178 |
+
|
179 |
+
| Model | WER | CER |
|
180 |
+
| ------------- | ------------- | ------------- |
|
181 |
+
| jonatasgrosman/wav2vec2-large-xlsr-53-english | **18.98%** | **8.29%** |
|
182 |
+
| jonatasgrosman/wav2vec2-large-english | 21.53% | 9.66% |
|
183 |
+
| facebook/wav2vec2-large-960h-lv60-self | 22.03% | 10.39% |
|
184 |
+
| facebook/wav2vec2-large-960h-lv60 | 23.97% | 11.14% |
|
185 |
+
| boris/xlsr-en-punctuation | 29.10% | 10.75% |
|
186 |
+
| facebook/wav2vec2-large-960h | 32.79% | 16.03% |
|
187 |
+
| facebook/wav2vec2-base-960h | 39.86% | 19.89% |
|
188 |
+
| facebook/wav2vec2-base-100h | 51.06% | 25.06% |
|
189 |
+
| elgeish/wav2vec2-large-lv60-timit-asr | 59.96% | 34.28% |
|
190 |
+
| facebook/wav2vec2-base-10k-voxpopuli-ft-en | 66.41% | 36.76% |
|
191 |
+
| elgeish/wav2vec2-base-timit-asr | 68.78% | 36.81% |
|