harshit345 commited on
Commit
1e98c78
1 Parent(s): 8036347

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +191 -0
README.md ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ - cer
8
+ tags:
9
+ - audio
10
+ - automatic-speech-recognition
11
+ - speech
12
+ - xlsr-fine-tuning-week
13
+ license: apache-2.0
14
+ model-index:
15
+ - name: Wav2Vec2 English by Jonatas Grosman
16
+ results:
17
+ - task:
18
+ name: Speech Recognition
19
+ type: automatic-speech-recognition
20
+ dataset:
21
+ name: Common Voice en
22
+ type: common_voice
23
+ args: en
24
+ metrics:
25
+ - name: Test WER
26
+ type: wer
27
+ value: 21.53
28
+ - name: Test CER
29
+ type: cer
30
+ value: 9.66
31
+ ---
32
+
33
+ # Wav2vec2-Large-English
34
+
35
+ Fine-tuned [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on English using the [Common Voice](https://huggingface.co/datasets/common_voice).
36
+ When using this model, make sure that your speech input is sampled at 16kHz.
37
+
38
+ This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
39
+
40
+ The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
41
+
42
+ ## Usage
43
+
44
+ The model can be used directly (without a language model) as follows...
45
+
46
+ Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library:
47
+
48
+ ```python
49
+ from asrecognition import ASREngine
50
+
51
+ asr = ASREngine("fr", model_path="jonatasgrosman/wav2vec2-large-english")
52
+
53
+ audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
54
+ transcriptions = asr.transcribe(audio_paths)
55
+ ```
56
+
57
+ Writing your own inference script:
58
+
59
+ ```python
60
+ import torch
61
+ import librosa
62
+ from datasets import load_dataset
63
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
64
+
65
+ LANG_ID = "en"
66
+ MODEL_ID = "jonatasgrosman/wav2vec2-large-english"
67
+ SAMPLES = 10
68
+
69
+ test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
70
+
71
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
72
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
73
+
74
+ # Preprocessing the datasets.
75
+ # We need to read the audio files as arrays
76
+ def speech_file_to_array_fn(batch):
77
+ speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
78
+ batch["speech"] = speech_array
79
+ batch["sentence"] = batch["sentence"].upper()
80
+ return batch
81
+
82
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
83
+ inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
84
+
85
+ with torch.no_grad():
86
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
87
+
88
+ predicted_ids = torch.argmax(logits, dim=-1)
89
+ predicted_sentences = processor.batch_decode(predicted_ids)
90
+
91
+ for i, predicted_sentence in enumerate(predicted_sentences):
92
+ print("-" * 100)
93
+ print("Reference:", test_dataset[i]["sentence"])
94
+ print("Prediction:", predicted_sentence)
95
+ ```
96
+
97
+ | Reference | Prediction |
98
+ | ------------- | ------------- |
99
+ | "SHE'LL BE ALL RIGHT." | SHELL BE ALL RIGHT |
100
+ | SIX | SIX |
101
+ | "ALL'S WELL THAT ENDS WELL." | ALLAS WELL THAT ENDS WELL |
102
+ | DO YOU MEAN IT? | W MEAN IT |
103
+ | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESTION |
104
+ | HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSILLA GOING TO BANDL AND BE WHIT IS LIKE QU AND QU |
105
+ | "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTION AS HAME AK AN THE POT |
106
+ | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
107
+ | SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUCE IS SAUCE FOR THE GONDER |
108
+ | GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |
109
+
110
+ ## Evaluation
111
+
112
+ The model can be evaluated as follows on the English (en) test data of Common Voice.
113
+
114
+ ```python
115
+ import torch
116
+ import re
117
+ import librosa
118
+ from datasets import load_dataset, load_metric
119
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
120
+
121
+ LANG_ID = "en"
122
+ MODEL_ID = "jonatasgrosman/wav2vec2-large-english"
123
+ DEVICE = "cuda"
124
+
125
+ CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
126
+ "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
127
+ "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
128
+ "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
129
+ "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
130
+
131
+ test_dataset = load_dataset("common_voice", LANG_ID, split="test")
132
+
133
+ wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
134
+ cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
135
+
136
+ chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
137
+
138
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
139
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
140
+ model.to(DEVICE)
141
+
142
+ # Preprocessing the datasets.
143
+ # We need to read the audio files as arrays
144
+ def speech_file_to_array_fn(batch):
145
+ with warnings.catch_warnings():
146
+ warnings.simplefilter("ignore")
147
+ speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
148
+ batch["speech"] = speech_array
149
+ batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
150
+ return batch
151
+
152
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
153
+
154
+ # Preprocessing the datasets.
155
+ # We need to read the audio files as arrays
156
+ def evaluate(batch):
157
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
158
+
159
+ with torch.no_grad():
160
+ logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
161
+
162
+ pred_ids = torch.argmax(logits, dim=-1)
163
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
164
+ return batch
165
+
166
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
167
+
168
+ predictions = [x.upper() for x in result["pred_strings"]]
169
+ references = [x.upper() for x in result["sentence"]]
170
+
171
+ print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
172
+ print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
173
+ ```
174
+
175
+ **Test Result**:
176
+
177
+ In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-06-17). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
178
+
179
+ | Model | WER | CER |
180
+ | ------------- | ------------- | ------------- |
181
+ | jonatasgrosman/wav2vec2-large-xlsr-53-english | **18.98%** | **8.29%** |
182
+ | jonatasgrosman/wav2vec2-large-english | 21.53% | 9.66% |
183
+ | facebook/wav2vec2-large-960h-lv60-self | 22.03% | 10.39% |
184
+ | facebook/wav2vec2-large-960h-lv60 | 23.97% | 11.14% |
185
+ | boris/xlsr-en-punctuation | 29.10% | 10.75% |
186
+ | facebook/wav2vec2-large-960h | 32.79% | 16.03% |
187
+ | facebook/wav2vec2-base-960h | 39.86% | 19.89% |
188
+ | facebook/wav2vec2-base-100h | 51.06% | 25.06% |
189
+ | elgeish/wav2vec2-large-lv60-timit-asr | 59.96% | 34.28% |
190
+ | facebook/wav2vec2-base-10k-voxpopuli-ft-en | 66.41% | 36.76% |
191
+ | elgeish/wav2vec2-base-timit-asr | 68.78% | 36.81% |