harshit345 commited on
Commit
2c372c0
1 Parent(s): f7cac30

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -48
README.md CHANGED
@@ -1,25 +1,24 @@
1
  ---
2
  language: en
3
- datasets: Toronto emotional speech set (TESS)(https://www.kaggle.com/ejlok1/toronto-emotional-speech-set-tess)
 
4
  tags:
5
  - audio
6
- - automatic-speech-recognition
7
  - speech
8
- - speech-emotion-recognition
9
  license: apache-2.0
10
  ---
11
- # Emotion Recognition in Speech using Wav2Vec 2.0
12
- ## How to use
13
- ### Requirements
14
- ```bash
15
  # requirement packages
16
  !pip install git+https://github.com/huggingface/datasets.git
17
  !pip install git+https://github.com/huggingface/transformers.git
18
  !pip install torchaudio
19
  !pip install librosa
20
- ```
21
- ### Prediction
22
- ```python
 
 
23
  import torch
24
  import torch.nn as nn
25
  import torch.nn.functional as F
@@ -29,16 +28,16 @@ import librosa
29
  import IPython.display as ipd
30
  import numpy as np
31
  import pandas as pd
32
- ```
33
- ```python
34
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
35
- model_name_or_path = "harshit345/xlsr-wav2vec-speech-emotion-recognition"
36
  config = AutoConfig.from_pretrained(model_name_or_path)
37
  feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
38
  sampling_rate = feature_extractor.sampling_rate
39
  model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
40
- ```
41
- ```python
42
  def speech_file_to_array_fn(path, sampling_rate):
43
  speech_array, _sampling_rate = torchaudio.load(path)
44
  resampler = torchaudio.transforms.Resample(_sampling_rate)
@@ -53,37 +52,17 @@ def predict(path, sampling_rate):
53
  scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
54
  outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
55
  return outputs
56
- ```
57
- ```python
58
- path = "/path/to/disgust.wav"
 
 
59
  outputs = predict(path, sampling_rate)
60
- ```
61
- ```bash
62
- [
63
- {'Emotion': 'anger', 'Score': '12.2%'},
64
- {'Emotion': 'disgust', 'Score': '78.8%'},
65
- {'Emotion': 'fear', 'Score': '7.2%'},
66
- {'Emotion': 'happiness', 'Score': '1.3%'},
67
- {'Emotion': 'sadness', 'Score': '1.5%'}
68
- ]
69
- ```
70
-
71
-
72
- ## Evaluation
73
- The following tables summarize the scores obtained by model overall and per each class.
74
-
75
-
76
- | Emotions | precision | recall | f1-score | accuracy |
77
- |-----------|-----------|--------|----------|----------|
78
- | anger | 0.82 | 1.00 | 0.81 | |
79
- | disgust | 0.85 | 0.96 | 0.85 | |
80
- | fear | 0.78 | 0.88 | 0.80 | |
81
- | happiness | 0.84 | 0.71 | 0.78 | |
82
- | sadness | 0.86 | 1.00 | 0.79 | |
83
- | | | | Overall | 0.806 |
84
-
85
-
86
- ##
87
-
88
- Colab Notebook
89
- https://colab.research.google.com/drive/1aPPb_ZVS5dlFVZySly8Q80a44La1XjJu?usp=sharing
 
1
  ---
2
  language: en
3
+ datasets:
4
+ - aesdd
5
  tags:
6
  - audio
7
+ - audio-classification
8
  - speech
 
9
  license: apache-2.0
10
  ---
11
+ ~~~
 
 
 
12
  # requirement packages
13
  !pip install git+https://github.com/huggingface/datasets.git
14
  !pip install git+https://github.com/huggingface/transformers.git
15
  !pip install torchaudio
16
  !pip install librosa
17
+ !git clone https://github.com/m3hrdadfi/soxan
18
+ cd soxan
19
+ ~~~
20
+ # prediction
21
+ ~~~
22
  import torch
23
  import torch.nn as nn
24
  import torch.nn.functional as F
 
28
  import IPython.display as ipd
29
  import numpy as np
30
  import pandas as pd
31
+ ~~~
32
+ ~~~
33
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
34
+ model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition"
35
  config = AutoConfig.from_pretrained(model_name_or_path)
36
  feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
37
  sampling_rate = feature_extractor.sampling_rate
38
  model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
39
+ ~~~
40
+ ~~~
41
  def speech_file_to_array_fn(path, sampling_rate):
42
  speech_array, _sampling_rate = torchaudio.load(path)
43
  resampler = torchaudio.transforms.Resample(_sampling_rate)
 
52
  scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
53
  outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
54
  return outputs
55
+ ~~~
56
+ # prediction
57
+ ~~~
58
+ # path for a sample
59
+ path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'
60
  outputs = predict(path, sampling_rate)
61
+ ~~~
62
+ ~~~
63
+ [{'Emotion': 'anger', 'Score': '98.3%'},
64
+ {'Emotion': 'disgust', 'Score': '0.0%'},
65
+ {'Emotion': 'fear', 'Score': '0.4%'},
66
+ {'Emotion': 'happiness', 'Score': '0.7%'},
67
+ {'Emotion': 'sadness', 'Score': '0.5%'}]
68
+ ~~~