update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: ind_roberta
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# ind_roberta
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.5869
|
17 |
+
- Accuracy@en: 0.9367
|
18 |
+
- F1@en: 0.9349
|
19 |
+
- Precision@en: 0.9321
|
20 |
+
- Recall@en: 0.9389
|
21 |
+
- Loss@en: 0.5869
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 4
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 13
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy@en | F1@en | Precision@en | Recall@en | Loss@en |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:|:------------:|:---------:|:-------:|
|
52 |
+
| 0.1056 | 1.0 | 375 | 0.3912 | 0.91 | 0.9069 | 0.9064 | 0.9074 | 0.3912 |
|
53 |
+
| 0.0651 | 2.0 | 750 | 0.4985 | 0.9167 | 0.9146 | 0.9114 | 0.9195 | 0.4985 |
|
54 |
+
| 0.1342 | 3.0 | 1125 | 0.4022 | 0.9233 | 0.9209 | 0.9194 | 0.9225 | 0.4022 |
|
55 |
+
| 0.0982 | 4.0 | 1500 | 0.4177 | 0.9433 | 0.9418 | 0.9389 | 0.9458 | 0.4177 |
|
56 |
+
| 0.0237 | 5.0 | 1875 | 0.5359 | 0.94 | 0.9386 | 0.9351 | 0.9443 | 0.5359 |
|
57 |
+
| 0.0243 | 6.0 | 2250 | 0.5797 | 0.9233 | 0.9212 | 0.9185 | 0.9251 | 0.5797 |
|
58 |
+
| 0.0377 | 7.0 | 2625 | 0.5550 | 0.94 | 0.9387 | 0.9350 | 0.9456 | 0.5550 |
|
59 |
+
| 0.0001 | 8.0 | 3000 | 0.5920 | 0.9367 | 0.9353 | 0.9316 | 0.9428 | 0.5920 |
|
60 |
+
| 0.0119 | 9.0 | 3375 | 0.5539 | 0.94 | 0.9387 | 0.9350 | 0.9456 | 0.5539 |
|
61 |
+
| 0.0215 | 10.0 | 3750 | 0.5690 | 0.9433 | 0.9420 | 0.9384 | 0.9484 | 0.5690 |
|
62 |
+
| 0.0146 | 11.0 | 4125 | 0.5687 | 0.9433 | 0.9420 | 0.9384 | 0.9484 | 0.5687 |
|
63 |
+
| 0.0001 | 12.0 | 4500 | 0.5718 | 0.94 | 0.9386 | 0.9351 | 0.9443 | 0.5718 |
|
64 |
+
| 0.0091 | 13.0 | 4875 | 0.5869 | 0.9367 | 0.9349 | 0.9321 | 0.9389 | 0.5869 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.17.0
|
70 |
+
- Pytorch 2.2.1+cu121
|
71 |
+
- Datasets 2.18.0
|
72 |
+
- Tokenizers 0.15.2
|