harsh13333 commited on
Commit
c9b064c
1 Parent(s): f59d959

End of training

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.5178571428571429
29
  - name: Recall
30
  type: recall
31
- value: 0.7837837837837838
32
  - name: F1
33
  type: f1
34
- value: 0.6236559139784947
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.7796610169491526
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the shipping_label_ner dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.7118
48
- - Precision: 0.5179
49
- - Recall: 0.7838
50
- - F1: 0.6237
51
- - Accuracy: 0.7797
52
 
53
  ## Model description
54
 
@@ -73,32 +73,42 @@ The following hyperparameters were used during training:
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - num_epochs: 20
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | No log | 1.0 | 7 | 1.8106 | 0.0 | 0.0 | 0.0 | 0.5169 |
83
- | No log | 2.0 | 14 | 1.6175 | 0.5556 | 0.1351 | 0.2174 | 0.5932 |
84
- | No log | 3.0 | 21 | 1.3124 | 0.6 | 0.2432 | 0.3462 | 0.6441 |
85
- | No log | 4.0 | 28 | 1.1318 | 0.6471 | 0.5946 | 0.6197 | 0.8051 |
86
- | No log | 5.0 | 35 | 0.9306 | 0.6176 | 0.5676 | 0.5915 | 0.7881 |
87
- | No log | 6.0 | 42 | 0.8279 | 0.5476 | 0.6216 | 0.5823 | 0.7712 |
88
- | No log | 7.0 | 49 | 0.7609 | 0.5952 | 0.6757 | 0.6329 | 0.7881 |
89
- | No log | 8.0 | 56 | 0.7484 | 0.6327 | 0.8378 | 0.7209 | 0.8220 |
90
- | No log | 9.0 | 63 | 0.7035 | 0.6596 | 0.8378 | 0.7381 | 0.8220 |
91
- | No log | 10.0 | 70 | 0.7281 | 0.5741 | 0.8378 | 0.6813 | 0.7881 |
92
- | No log | 11.0 | 77 | 0.6970 | 0.5741 | 0.8378 | 0.6813 | 0.7881 |
93
- | No log | 12.0 | 84 | 0.6790 | 0.5 | 0.7568 | 0.6022 | 0.7881 |
94
- | No log | 13.0 | 91 | 0.7124 | 0.4828 | 0.7568 | 0.5895 | 0.7712 |
95
- | No log | 14.0 | 98 | 0.6770 | 0.5 | 0.7568 | 0.6022 | 0.7797 |
96
- | No log | 15.0 | 105 | 0.7219 | 0.5179 | 0.7838 | 0.6237 | 0.7797 |
97
- | No log | 16.0 | 112 | 0.6695 | 0.5273 | 0.7838 | 0.6304 | 0.7881 |
98
- | No log | 17.0 | 119 | 0.6885 | 0.5179 | 0.7838 | 0.6237 | 0.7797 |
99
- | No log | 18.0 | 126 | 0.7138 | 0.5088 | 0.7838 | 0.6170 | 0.7712 |
100
- | No log | 19.0 | 133 | 0.7113 | 0.5179 | 0.7838 | 0.6237 | 0.7797 |
101
- | No log | 20.0 | 140 | 0.7118 | 0.5179 | 0.7838 | 0.6237 | 0.7797 |
 
 
 
 
 
 
 
 
 
 
102
 
103
 
104
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8192771084337349
29
  - name: Recall
30
  type: recall
31
+ value: 0.9066666666666666
32
  - name: F1
33
  type: f1
34
+ value: 0.8607594936708859
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.903954802259887
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the shipping_label_ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.4675
48
+ - Precision: 0.8193
49
+ - Recall: 0.9067
50
+ - F1: 0.8608
51
+ - Accuracy: 0.9040
52
 
53
  ## Model description
54
 
 
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 30
77
 
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 7 | 1.9567 | 0.0 | 0.0 | 0.0 | 0.4294 |
83
+ | No log | 2.0 | 14 | 1.7382 | 1.0 | 0.0133 | 0.0263 | 0.4350 |
84
+ | No log | 3.0 | 21 | 1.5156 | 0.56 | 0.1867 | 0.28 | 0.5424 |
85
+ | No log | 4.0 | 28 | 1.3070 | 0.5185 | 0.3733 | 0.4341 | 0.6215 |
86
+ | No log | 5.0 | 35 | 1.1073 | 0.6792 | 0.48 | 0.5625 | 0.6667 |
87
+ | No log | 6.0 | 42 | 0.9590 | 0.6970 | 0.6133 | 0.6525 | 0.7288 |
88
+ | No log | 7.0 | 49 | 0.8036 | 0.7324 | 0.6933 | 0.7123 | 0.7853 |
89
+ | No log | 8.0 | 56 | 0.7173 | 0.6860 | 0.7867 | 0.7329 | 0.8305 |
90
+ | No log | 9.0 | 63 | 0.5963 | 0.7778 | 0.84 | 0.8077 | 0.8814 |
91
+ | No log | 10.0 | 70 | 0.5354 | 0.7901 | 0.8533 | 0.8205 | 0.8870 |
92
+ | No log | 11.0 | 77 | 0.5048 | 0.8 | 0.8533 | 0.8258 | 0.8814 |
93
+ | No log | 12.0 | 84 | 0.4992 | 0.8293 | 0.9067 | 0.8662 | 0.9096 |
94
+ | No log | 13.0 | 91 | 0.4745 | 0.8205 | 0.8533 | 0.8366 | 0.8927 |
95
+ | No log | 14.0 | 98 | 0.4489 | 0.8608 | 0.9067 | 0.8831 | 0.9153 |
96
+ | No log | 15.0 | 105 | 0.4236 | 0.8608 | 0.9067 | 0.8831 | 0.9153 |
97
+ | No log | 16.0 | 112 | 0.4621 | 0.8193 | 0.9067 | 0.8608 | 0.9096 |
98
+ | No log | 17.0 | 119 | 0.4417 | 0.85 | 0.9067 | 0.8774 | 0.9209 |
99
+ | No log | 18.0 | 126 | 0.4642 | 0.8095 | 0.9067 | 0.8553 | 0.9040 |
100
+ | No log | 19.0 | 133 | 0.4244 | 0.85 | 0.9067 | 0.8774 | 0.9096 |
101
+ | No log | 20.0 | 140 | 0.4731 | 0.8193 | 0.9067 | 0.8608 | 0.9096 |
102
+ | No log | 21.0 | 147 | 0.4697 | 0.8193 | 0.9067 | 0.8608 | 0.9040 |
103
+ | No log | 22.0 | 154 | 0.4330 | 0.8293 | 0.9067 | 0.8662 | 0.9096 |
104
+ | No log | 23.0 | 161 | 0.4531 | 0.8193 | 0.9067 | 0.8608 | 0.9040 |
105
+ | No log | 24.0 | 168 | 0.4433 | 0.8193 | 0.9067 | 0.8608 | 0.9040 |
106
+ | No log | 25.0 | 175 | 0.4477 | 0.8095 | 0.9067 | 0.8553 | 0.9040 |
107
+ | No log | 26.0 | 182 | 0.4446 | 0.8293 | 0.9067 | 0.8662 | 0.9096 |
108
+ | No log | 27.0 | 189 | 0.4578 | 0.8293 | 0.9067 | 0.8662 | 0.9096 |
109
+ | No log | 28.0 | 196 | 0.4640 | 0.8293 | 0.9067 | 0.8662 | 0.9096 |
110
+ | No log | 29.0 | 203 | 0.4683 | 0.8193 | 0.9067 | 0.8608 | 0.9040 |
111
+ | No log | 30.0 | 210 | 0.4675 | 0.8193 | 0.9067 | 0.8608 | 0.9040 |
112
 
113
 
114
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e67b4641eaba9353ceca32b41f9eb4106ccc80948dbcf14b59636fa23a274060
3
  size 260815972
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e71c39715066b7131981ad375b085dcf90fe188715391e83629ad5ddaf6d23a2
3
  size 260815972
runs/Mar28_05-12-04_7cf60fa1c92f/events.out.tfevents.1711602729.7cf60fa1c92f.682.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:92a78f2b20aea0b50047c0bf3c946abe0cd48d626d3ac9a65ccc2f076946ef69
3
- size 18574
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:769e8a8f3cfb954b4b19d15ff86d4abcc88ec8dbe1ba6915b381a8398d3b186a
3
+ size 19400