happyme531's picture
Upload 38 files
1df274b verified
raw
history blame
29.2 kB
import argparse
import json
import time
import PIL
from diffusers import StableDiffusionPipeline
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import (
LCMScheduler
)
from diffusers.schedulers.scheduling_utils import SchedulerMixin
import gc
import inspect
import logging
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
import numpy as np
import os
import torch # Only used for `torch.from_tensor` in `pipe.scheduler.step()`
from transformers import CLIPFeatureExtractor, CLIPTokenizer
from typing import Callable, List, Optional, Union, Tuple
from PIL import Image
# from rknnlite.api import RKNNLite
# class RKNN2Model:
# """ Wrapper for running RKNPU2 models """
# def __init__(self, model_path):
# logger.info(f"Loading {model_path}")
# start = time.time()
# assert os.path.exists(model_path) and model_path.endswith(".rknn")
# self.rknnlite = RKNNLite()
# self.rknnlite.load_rknn(model_path)
# self.rknnlite.init_runtime(core_mask=RKNNLite.NPU_CORE_AUTO) # Multi-core will cause kernel crash
# load_time = time.time() - start
# logger.info(f"Done. Took {load_time:.1f} seconds.")
# self.modelname = model_path.split("/")[-1]
# self.inference_time = 0
# def __call__(self, **kwargs) -> List[np.ndarray]:
# np.savez(f"{self.modelname}_input_{self.inference_time}.npz", **kwargs)
# #print(kwargs)
# input_list = [value for key, value in kwargs.items()]
# for i, input in enumerate(input_list):
# if isinstance(input, np.ndarray):
# print(f"input {i} shape: {input.shape}")
# results = self.rknnlite.inference(inputs=input_list)
# for res in results:
# print(f"output shape: {res.shape}")
# return results
import onnxruntime as ort
class RKNN2Model:
""" Wrapper for running ONNX models """
def __init__(self, model_dir):
logger.info(f"Loading {model_dir}")
start = time.time()
self.config = json.load(open(os.path.join(model_dir, "config.json")))
assert os.path.exists(model_dir) and os.path.exists(os.path.join(model_dir, "model.onnx"))
self.session = ort.InferenceSession(os.path.join(model_dir, "model.onnx"))
load_time = time.time() - start
logger.info(f"Done. Took {load_time:.1f} seconds.")
self.modelname = model_dir.split("/")[-1]
self.inference_time = 0
def __call__(self, **kwargs) -> List[np.ndarray]:
# np.savez(f"onnx_out/{self.modelname}_input_{self.inference_time}.npz", **kwargs)
self.inference_time += 1
results = self.session.run(None, kwargs)
results_list = []
for res in results:
results_list.append(res)
return results
class RKNN2StableDiffusionPipeline(DiffusionPipeline):
""" RKNN2 version of
`diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline`
"""
def __init__(
self,
text_encoder: RKNN2Model,
unet: RKNN2Model,
vae_decoder: RKNN2Model,
scheduler: LCMScheduler,
tokenizer: CLIPTokenizer,
force_zeros_for_empty_prompt: Optional[bool] = True,
feature_extractor: Optional[CLIPFeatureExtractor] = None,
text_encoder_2: Optional[RKNN2Model] = None,
tokenizer_2: Optional[CLIPTokenizer] = None
):
super().__init__()
# Register non-Core ML components of the pipeline similar to the original pipeline
self.register_modules(
tokenizer=tokenizer,
scheduler=scheduler,
feature_extractor=feature_extractor,
)
self.force_zeros_for_empty_prompt = force_zeros_for_empty_prompt
self.safety_checker = None
# Register Core ML components of the pipeline
self.text_encoder = text_encoder
self.text_encoder_2 = text_encoder_2
self.tokenizer_2 = tokenizer_2
self.unet = unet
self.vae_decoder = vae_decoder
VAE_DECODER_UPSAMPLE_FACTOR = 8
# In PyTorch, users can determine the tensor shapes dynamically by default
# In CoreML, tensors have static shapes unless flexible shapes were used during export
# See https://coremltools.readme.io/docs/flexible-inputs
latent_h, latent_w = 32, 32 # hallo1: FIXME: hardcoded value
self.height = latent_h * VAE_DECODER_UPSAMPLE_FACTOR
self.width = latent_w * VAE_DECODER_UPSAMPLE_FACTOR
self.vae_scale_factor = VAE_DECODER_UPSAMPLE_FACTOR
logger.info(
f"Stable Diffusion configured to generate {self.height}x{self.width} images"
)
@staticmethod
def postprocess(
image: np.ndarray,
output_type: str = "pil",
do_denormalize: Optional[List[bool]] = None,
):
def numpy_to_pil(images: np.ndarray):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def denormalize(images: np.ndarray):
"""
Denormalize an image array to [0,1].
"""
return np.clip(images / 2 + 0.5, 0, 1)
if not isinstance(image, np.ndarray):
raise ValueError(
f"Input for postprocessing is in incorrect format: {type(image)}. We only support np array"
)
if output_type not in ["latent", "np", "pil"]:
deprecation_message = (
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
"`pil`, `np`, `pt`, `latent`"
)
logger.warning(deprecation_message)
output_type = "np"
if output_type == "latent":
return image
if do_denormalize is None:
raise ValueError("do_denormalize is required for postprocessing")
image = np.stack(
[denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])], axis=0
)
image = image.transpose((0, 2, 3, 1))
if output_type == "pil":
image = numpy_to_pil(image)
return image
def _encode_prompt(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: int,
do_classifier_free_guidance: bool,
negative_prompt: Optional[Union[str, list]],
prompt_embeds: Optional[np.ndarray] = None,
negative_prompt_embeds: Optional[np.ndarray] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`Union[str, List[str]]`):
prompt to be encoded
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`Optional[Union[str, list]]`):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids
if not np.array_equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0]
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt] * batch_size
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="np",
)
negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0]
if do_classifier_free_guidance:
negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
# Copied from https://github.com/huggingface/diffusers/blob/v0.17.1/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L217
def check_inputs(
self,
prompt: Union[str, List[str]],
height: Optional[int],
width: Optional[int],
callback_steps: int,
negative_prompt: Optional[str] = None,
prompt_embeds: Optional[np.ndarray] = None,
negative_prompt_embeds: Optional[np.ndarray] = None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
if isinstance(generator, np.random.RandomState):
latents = generator.randn(*shape).astype(dtype)
elif isinstance(generator, torch.Generator):
latents = torch.randn(*shape, generator=generator).numpy().astype(dtype)
else:
raise ValueError(
f"Expected `generator` to be of type `np.random.RandomState` or `torch.Generator`, but got"
f" {type(generator)}."
)
elif latents.shape != shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * np.float64(self.scheduler.init_noise_sigma)
return latents
# Adapted from https://github.com/huggingface/diffusers/blob/v0.22.0/src/diffusers/pipelines/latent_consistency/pipeline_latent_consistency.py#L264
def __call__(
self,
prompt: Union[str, List[str]] = "",
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 4,
original_inference_steps: int = None,
guidance_scale: float = 8.5,
num_images_per_prompt: int = 1,
generator: Optional[Union[np.random.RandomState, torch.Generator]] = None,
latents: Optional[np.ndarray] = None,
prompt_embeds: Optional[np.ndarray] = None,
output_type: str = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
callback_steps: int = 1,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`Optional[Union[str, List[str]]]`, defaults to None):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`Optional[int]`, defaults to None):
The height in pixels of the generated image.
width (`Optional[int]`, defaults to None):
The width in pixels of the generated image.
num_inference_steps (`int`, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, defaults to 1):
The number of images to generate per prompt.
generator (`Optional[Union[np.random.RandomState, torch.Generator]]`, defaults to `None`):
A np.random.RandomState to make generation deterministic.
latents (`Optional[np.ndarray]`, defaults to `None`):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
output_type (`str`, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (Optional[Callable], defaults to `None`):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
guidance_rescale (`float`, defaults to 0.0):
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
Guidance rescale factor should fix overexposure when using zero terminal SNR.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
height = height or self.unet.config["sample_size"] * self.vae_scale_factor
width = width or self.unet.config["sample_size"] * self.vae_scale_factor
# Don't need to get negative prompts due to LCM guided distillation
negative_prompt = None
negative_prompt_embeds = None
# check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# define call parameters
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if generator is None:
generator = np.random.RandomState()
prompt_embeds = self._encode_prompt(
prompt,
num_images_per_prompt,
False,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps, original_inference_steps=original_inference_steps)
timesteps = self.scheduler.timesteps
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
self.unet.config["in_channels"],
height,
width,
prompt_embeds.dtype,
generator,
latents,
)
bs = batch_size * num_images_per_prompt
# get Guidance Scale Embedding
w = np.full(bs, guidance_scale - 1, dtype=prompt_embeds.dtype)
w_embedding = self.get_guidance_scale_embedding(
w, embedding_dim=self.unet.config["time_cond_proj_dim"], dtype=prompt_embeds.dtype
)
# Adapted from diffusers to extend it for other runtimes than ORT
timestep_dtype = np.int64
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
for i, t in enumerate(self.progress_bar(timesteps)):
timestep = np.array([t], dtype=timestep_dtype)
noise_pred = self.unet(
sample=latents,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
timestep_cond=w_embedding,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents, denoised = self.scheduler.step(
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), return_dict=False
)
latents, denoised = latents.numpy(), denoised.numpy()
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = denoised
has_nsfw_concept = None
else:
denoised /= self.vae_decoder.config["scaling_factor"]
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
image = np.concatenate(
[self.vae_decoder(latent_sample=denoised[i : i + 1])[0] for i in range(denoised.shape[0])]
)
# image, has_nsfw_concept = self.run_safety_checker(image)
has_nsfw_concept = None # skip safety checker
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
# Adapted from https://github.com/huggingface/diffusers/blob/v0.22.0/src/diffusers/pipelines/latent_consistency/pipeline_latent_consistency.py#L264
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=None):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
w = w * 1000
half_dim = embedding_dim // 2
emb = np.log(10000.0) / (half_dim - 1)
emb = np.exp(np.arange(half_dim, dtype=dtype) * -emb)
emb = w[:, None] * emb[None, :]
emb = np.concatenate([np.sin(emb), np.cos(emb)], axis=1)
if embedding_dim % 2 == 1: # zero pad
emb = np.pad(emb, [(0, 0), (0, 1)])
assert emb.shape == (w.shape[0], embedding_dim)
return emb
def get_image_path(args, **override_kwargs):
""" mkdir output folder and encode metadata in the filename
"""
out_folder = os.path.join(args.o, "_".join(args.prompt.replace("/", "_").rsplit(" ")))
os.makedirs(out_folder, exist_ok=True)
out_fname = f"randomSeed_{override_kwargs.get('seed', None) or args.seed}"
out_fname += f"_LCM_"
out_fname += f"_numInferenceSteps{override_kwargs.get('num_inference_steps', None) or args.num_inference_steps}"
out_fname += "_onnx_"
return os.path.join(out_folder, out_fname + ".png")
def prepare_controlnet_cond(image_path, height, width):
image = Image.open(image_path).convert("RGB")
image = image.resize((height, width), resample=Image.LANCZOS)
image = np.array(image).transpose(2, 0, 1) / 255.0
return image
def main(args):
logger.info(f"Setting random seed to {args.seed}")
# load scheduler from /scheduler/scheduler_config.json
scheduler_config_path = os.path.join(args.i, "scheduler/scheduler_config.json")
with open(scheduler_config_path, "r") as f:
scheduler_config = json.load(f)
user_specified_scheduler = LCMScheduler.from_config(scheduler_config)
print("user_specified_scheduler", user_specified_scheduler)
pipe = RKNN2StableDiffusionPipeline(
text_encoder=RKNN2Model(os.path.join(args.i, "text_encoder")),
unet=RKNN2Model(os.path.join(args.i, "unet")),
vae_decoder=RKNN2Model(os.path.join(args.i, "vae_decoder")),
scheduler=user_specified_scheduler,
tokenizer=CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16"),
)
logger.info("Beginning image generation.")
image = pipe(
prompt=args.prompt,
height=int(args.size.split("x")[0]),
width=int(args.size.split("x")[1]),
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
generator=np.random.RandomState(args.seed),
)
out_path = get_image_path(args)
logger.info(f"Saving generated image to {out_path}")
image["images"][0].save(out_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
required=True,
help="The text prompt to be used for text-to-image generation.")
parser.add_argument(
"-i",
required=True,
help=("Path to model directory"))
parser.add_argument("-o", required=True)
parser.add_argument("--seed",
default=93,
type=int,
help="Random seed to be able to reproduce results")
parser.add_argument(
"-s",
"--size",
default="256x256",
type=str,
help="Image size")
parser.add_argument(
"--num-inference-steps",
default=4,
type=int,
help="The number of iterations the unet model will be executed throughout the reverse diffusion process")
parser.add_argument(
"--guidance-scale",
default=7.5,
type=float,
help="Controls the influence of the text prompt on sampling process (0=random images)")
args = parser.parse_args()
main(args)