happycoding
commited on
Commit
•
2688f88
1
Parent(s):
c7eb0f7
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.41 +/- 15.02
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f25320f8dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f25320f8e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f25320f8ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f25320f8f70>", "_build": "<function ActorCriticPolicy._build at 0x7f25320fc040>", "forward": "<function ActorCriticPolicy.forward at 0x7f25320fc0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f25320fc160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f25320fc1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f25320fc280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f25320fc310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f25320fc3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f25320fc430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f25320f5840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673989060070141308, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqkpL0FNau7jrsRvMr0EzwtbxE96IIBvQAAgD8AAIA/TbNkvRTZnz8iMEC7R4GVvlJnAL6CMyM9AAAAAAAAAABzqIK9e5yOuv1k7zoEF9Q1MzHtOiGbCroAAIA/AACAPwCGODz6/3M+iENxvo85H76i14m9jM0lPQAAAAAAAAAAAFDZu/ETSD6Fc6O9iwVRvudXq7u+yp+8AAAAAAAAAAAAkBI7vXy3PzcHhj2k7J0+DnIDO6huQT0AAAAAAAAAAObOyz0BW5w+Fr38vYDRTb6VTy69UNMEPgAAAAAAAAAAmnO7vFJeuLuea1o8n2KNPLK2Cr216289AACAPwAAgD9DTJo+D3MrP3cRNL58JQS/sA7APtclKr4AAAAAAAAAALNWcb0pQCi6OHpPuEKEPbNLRIq6INt2NwAAgD8AAIA/muahPLrxQz7w5we9j7hevvdhOz3b0QS9AAAAAAAAAAAAOJs9hR3LPiKoU75SsDu+07CFveP9Lr0AAAAAAAAAAJqboL3DNDG8s4pIvPYJQL24CnQ9QI7vvAAAgD8AAIA/s1ANvewclLuST2E7/lmTPPrWEz2ysnq9AACAPwAAgD8ATnW8yN6BPyndljxFycC+gd5xvbBcoT0AAAAAAAAAADMMWL0JR60/q4+VvoXPm75qZNW9O1SHvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO99PjRcZbkCUhpRSlIwBbJRNXwGMAXSUR0Cz9lsrNGExdX2UKGgGaAloD0MIvCL430rEcECUhpRSlGgVTZ4BaBZHQLP2llxffGd1fZQoaAZoCWgPQwgkmkARCyhrQJSGlFKUaBVNLAFoFkdAs/cDnZCfH3V9lChoBmgJaA9DCL/zixL0H29AlIaUUpRoFU1tAWgWR0Cz931zp5eJdX2UKGgGaAloD0MIzsEzoQnKcUCUhpRSlGgVTQMBaBZHQLP3lGax5cF1fZQoaAZoCWgPQwjJ5qp5jhdrQJSGlFKUaBVN5wFoFkdAs/fb3xnWa3V9lChoBmgJaA9DCDCBW3ezE3BAlIaUUpRoFU3SAWgWR0Cz9+Lpu/DcdX2UKGgGaAloD0MIs34zMV0+SkCUhpRSlGgVS9loFkdAs/h0M6RyO3V9lChoBmgJaA9DCNvdA3RfdE1AlIaUUpRoFUvkaBZHQLP41VG0/np1fZQoaAZoCWgPQwhFLGLY4d1vQJSGlFKUaBVNwQFoFkdAs/kvyMDOknV9lChoBmgJaA9DCN7KEp1lVW9AlIaUUpRoFU24AWgWR0Cz+UwEEC/5dX2UKGgGaAloD0MIAdvBiH04bUCUhpRSlGgVTTYBaBZHQLP5a0cwQDp1fZQoaAZoCWgPQwiY/E/+7sZrQJSGlFKUaBVNRgFoFkdAs/mI0XP7enV9lChoBmgJaA9DCJ3X2CWq2FFAlIaUUpRoFUvPaBZHQLP5iLGaQV91fZQoaAZoCWgPQwiLi6NyE29uQJSGlFKUaBVNlgJoFkdAs/m7EOy3TnV9lChoBmgJaA9DCF2LFqBthnBAlIaUUpRoFU30AWgWR0Cz+dtN34bkdX2UKGgGaAloD0MI42w6AjghckCUhpRSlGgVTfEBaBZHQLP6KmkWRA91fZQoaAZoCWgPQwjDLR9JSQZuQJSGlFKUaBVNRwJoFkdAs/qLpkf9xnV9lChoBmgJaA9DCKCkwAIYCHBAlIaUUpRoFU1kAWgWR0Cz+vHEIgNgdX2UKGgGaAloD0MIgzKNJpdZcECUhpRSlGgVTUkBaBZHQLP69Ge+VTt1fZQoaAZoCWgPQwjBxvXv+gRxQJSGlFKUaBVNTgFoFkdAs/wdIWgvlHV9lChoBmgJaA9DCF37AnohlnBAlIaUUpRoFU01AWgWR0C0R6tJvo/zdX2UKGgGaAloD0MII028A7yicECUhpRSlGgVTToBaBZHQLRH3gTyrgh1fZQoaAZoCWgPQwjWc9L7xl1xQJSGlFKUaBVNVwFoFkdAtEi6938n/nV9lChoBmgJaA9DCJq1FJB2xm9AlIaUUpRoFU0uAmgWR0C0SN5eJHiFdX2UKGgGaAloD0MInWSry6lqcECUhpRSlGgVTdEBaBZHQLRKDFvybx51fZQoaAZoCWgPQwgWpu81BINTQJSGlFKUaBVL12gWR0C0Spwdfb9IdX2UKGgGaAloD0MIHXHIBtKZcECUhpRSlGgVTXwBaBZHQLRKxC6H0sh1fZQoaAZoCWgPQwgFFytqMGVuQJSGlFKUaBVNjwFoFkdAtEsEfzSThnV9lChoBmgJaA9DCH9OQX62s29AlIaUUpRoFU0aAWgWR0C0S1PywwCbdX2UKGgGaAloD0MILsVVZZ8UcECUhpRSlGgVTW0CaBZHQLRLh8qWkad1fZQoaAZoCWgPQwhkdha909htQJSGlFKUaBVNJwJoFkdAtEvNt4zJp3V9lChoBmgJaA9DCC5W1GAa31RAlIaUUpRoFU3oA2gWR0C0S/IekpI+dX2UKGgGaAloD0MI88e0Ng3bcUCUhpRSlGgVTawCaBZHQLRMfjYI0Il1fZQoaAZoCWgPQwhCQSlaObVuQJSGlFKUaBVNrQFoFkdAtEydx0dRznV9lChoBmgJaA9DCPyLoDFT13JAlIaUUpRoFU3bA2gWR0C0TQ7lJYkndX2UKGgGaAloD0MIu9QI/cyNcUCUhpRSlGgVTXMCaBZHQLRNHhmoR7J1fZQoaAZoCWgPQwhGYKxvoK5xQJSGlFKUaBVNTgFoFkdAtE4Wf29L6HV9lChoBmgJaA9DCATLETKQKG5AlIaUUpRoFU28AWgWR0C0TiBxYJVsdX2UKGgGaAloD0MIOZhNgGHwb0CUhpRSlGgVTXoDaBZHQLROfcnE2pB1fZQoaAZoCWgPQwjwiXWqvJJwQJSGlFKUaBVNIgFoFkdAtE6nBguyvHV9lChoBmgJaA9DCMxgjEiUvmtAlIaUUpRoFU3kAWgWR0C0TrUyULUkdX2UKGgGaAloD0MIou9uZYkPXkCUhpRSlGgVTegDaBZHQLRO6f1pTMt1fZQoaAZoCWgPQwjTakjco/ZyQJSGlFKUaBVNsAFoFkdAtE+gu14PgHV9lChoBmgJaA9DCOKxn8VSgnFAlIaUUpRoFU2IAWgWR0C0UFUu6ErYdX2UKGgGaAloD0MIfjUHCOa0UECUhpRSlGgVS7poFkdAtFD7y08eS3V9lChoBmgJaA9DCK7wLhfxgVFAlIaUUpRoFU0AAWgWR0C0UPxNmDlHdX2UKGgGaAloD0MI7E0MyUlmckCUhpRSlGgVTWQBaBZHQLRRHm8dxQ11fZQoaAZoCWgPQwjByTZwByprQJSGlFKUaBVNFwJoFkdAtFEhhiLEUHV9lChoBmgJaA9DCKc9JedEV3BAlIaUUpRoFU2aAWgWR0C0UScA/9pAdX2UKGgGaAloD0MIYk7QJocFckCUhpRSlGgVTSsBaBZHQLRRtL5RCQd1fZQoaAZoCWgPQwiFQgQcQg5wQJSGlFKUaBVNRAJoFkdAtFHvrGBFu3V9lChoBmgJaA9DCExRLo2fxnFAlIaUUpRoFU3cAWgWR0C0UlG/BWPtdX2UKGgGaAloD0MI1lQWhZ3OcECUhpRSlGgVTZMBaBZHQLRSZfDUExJ1fZQoaAZoCWgPQwgpIVhVb1xxQJSGlFKUaBVNXwJoFkdAtFJwawUxmHV9lChoBmgJaA9DCK8I/rcS8nFAlIaUUpRoFU1+AWgWR0C0UqUg0TDgdX2UKGgGaAloD0MIIa6cvbN5cUCUhpRSlGgVTaIBaBZHQLSdZRuTA311fZQoaAZoCWgPQwjF5uPakORwQJSGlFKUaBVNdQFoFkdAtJ3GuZCv5nV9lChoBmgJaA9DCLpKd9dZ52xAlIaUUpRoFU1cAWgWR0C0nizTfBN3dX2UKGgGaAloD0MIWi+GcqJEckCUhpRSlGgVTVoBaBZHQLSe3ww0wal1fZQoaAZoCWgPQwjSN2kaFKNwQJSGlFKUaBVNbAFoFkdAtJ8YGorFwXV9lChoBmgJaA9DCHPVPEfk7G9AlIaUUpRoFU09AWgWR0C0n0B9XtBwdX2UKGgGaAloD0MIEhPU8C2Ob0CUhpRSlGgVTZIBaBZHQLSfYn1Fpfx1fZQoaAZoCWgPQwjO/dXjvsZyQJSGlFKUaBVNtgFoFkdAtJ/sl3QlbHV9lChoBmgJaA9DCEVmLnB51XBAlIaUUpRoFU0vAWgWR0C0n/JHRTjvdX2UKGgGaAloD0MIkIe+u5XVXUCUhpRSlGgVTegDaBZHQLSgBTcZccF1fZQoaAZoCWgPQwj9S1KZoutwQJSGlFKUaBVNzAFoFkdAtKAIWBSUDHV9lChoBmgJaA9DCFUxlX4CEHBAlIaUUpRoFU1WAWgWR0C0oEPiT+vRdX2UKGgGaAloD0MIHzAPmXJtckCUhpRSlGgVTZYBaBZHQLSgairT6SF1fZQoaAZoCWgPQwjzrnrAfMxyQJSGlFKUaBVNsgFoFkdAtKD4d0aIe3V9lChoBmgJaA9DCELO+/84L2NAlIaUUpRoFU3oA2gWR0C0oWKynk1edX2UKGgGaAloD0MIopdRLLecRkCUhpRSlGgVS7BoFkdAtKGVVMmF8HV9lChoBmgJaA9DCDQUd7xJX25AlIaUUpRoFU1/AWgWR0C0oZpLM9r5dX2UKGgGaAloD0MIM2/VdejRckCUhpRSlGgVTWwBaBZHQLShxd4mkWR1fZQoaAZoCWgPQwhXs874PgZyQJSGlFKUaBVN8gFoFkdAtKJCMuOCG3V9lChoBmgJaA9DCIGxvoFJPHNAlIaUUpRoFU1PAWgWR0C0okcxO+IudX2UKGgGaAloD0MID+7O2u2LcECUhpRSlGgVTSQCaBZHQLSiVvvjOs11fZQoaAZoCWgPQwjzWDMyyI0tQJSGlFKUaBVLbWgWR0C0oopD7ZWadX2UKGgGaAloD0MIyxMIOwUycECUhpRSlGgVTWgBaBZHQLSiskH2RJV1fZQoaAZoCWgPQwicps8OuAZvQJSGlFKUaBVNOQFoFkdAtKLMDKYAsHV9lChoBmgJaA9DCK358ZeWYmtAlIaUUpRoFU1FAWgWR0C0os9Frl/6dX2UKGgGaAloD0MILC0j9V6AcECUhpRSlGgVTWIBaBZHQLSjXp35eqt1fZQoaAZoCWgPQwg8vr1r0FVFQJSGlFKUaBVLnmgWR0C0o7FtXPqtdX2UKGgGaAloD0MIN6eSAaD+bECUhpRSlGgVTYMBaBZHQLSjzkpqh111fZQoaAZoCWgPQwj1K50PT79xQJSGlFKUaBVNMQFoFkdAtKQNx1gYxnV9lChoBmgJaA9DCN3NUx1yK3JAlIaUUpRoFU00AmgWR0C0pBJCF9KFdX2UKGgGaAloD0MIMqzijUxzcECUhpRSlGgVTRQCaBZHQLSkFIZIg/11fZQoaAZoCWgPQwiTVKaYg4txQJSGlFKUaBVNVgFoFkdAtKSOsijcmHV9lChoBmgJaA9DCA1slWBxCXBAlIaUUpRoFU0ZAmgWR0C0pKVHjIaMdX2UKGgGaAloD0MILNhGPNnJPECUhpRSlGgVS69oFkdAtKTm+XZ5A3V9lChoBmgJaA9DCGdg5GVNGHFAlIaUUpRoFU0MAWgWR0C0pQ+nl4kedX2UKGgGaAloD0MIy2lPyTkVcUCUhpRSlGgVTVQBaBZHQLSlRCK77Kt1fZQoaAZoCWgPQwg4Mo/8wX9sQJSGlFKUaBVNcQFoFkdAtKWTWnTAnHV9lChoBmgJaA9DCCXqBZ9m43BAlIaUUpRoFU2pAWgWR0C0pZNKqXF+dX2UKGgGaAloD0MIxqS/l8KZb0CUhpRSlGgVTU8BaBZHQLSl0VcUuct1fZQoaAZoCWgPQwi13JkJBkBuQJSGlFKUaBVNmwFoFkdAtKZAfms/6nV9lChoBmgJaA9DCKxWJvzSPXBAlIaUUpRoFU1JAmgWR0C0pkB3u/lAdX2UKGgGaAloD0MIjkC8rl8IcUCUhpRSlGgVTZwBaBZHQLSmir/Khct1fZQoaAZoCWgPQwhafuAqz0lxQJSGlFKUaBVNLQFoFkdAtKbbtgKF7HV9lChoBmgJaA9DCEMEHEIVkXBAlIaUUpRoFU1XAWgWR0C0pvqESM99dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 4, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:991c9990421eab58fc9d51c049afbfe81fd6e5cbee42417d11b04b1402dfe84d
|
3 |
+
size 147411
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f25320f8dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f25320f8e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f25320f8ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f25320f8f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f25320fc040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f25320fc0d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f25320fc160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f25320fc1f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f25320fc280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f25320fc310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f25320fc3a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f25320fc430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f25320f5840>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673989060070141308,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqkpL0FNau7jrsRvMr0EzwtbxE96IIBvQAAgD8AAIA/TbNkvRTZnz8iMEC7R4GVvlJnAL6CMyM9AAAAAAAAAABzqIK9e5yOuv1k7zoEF9Q1MzHtOiGbCroAAIA/AACAPwCGODz6/3M+iENxvo85H76i14m9jM0lPQAAAAAAAAAAAFDZu/ETSD6Fc6O9iwVRvudXq7u+yp+8AAAAAAAAAAAAkBI7vXy3PzcHhj2k7J0+DnIDO6huQT0AAAAAAAAAAObOyz0BW5w+Fr38vYDRTb6VTy69UNMEPgAAAAAAAAAAmnO7vFJeuLuea1o8n2KNPLK2Cr216289AACAPwAAgD9DTJo+D3MrP3cRNL58JQS/sA7APtclKr4AAAAAAAAAALNWcb0pQCi6OHpPuEKEPbNLRIq6INt2NwAAgD8AAIA/muahPLrxQz7w5we9j7hevvdhOz3b0QS9AAAAAAAAAAAAOJs9hR3LPiKoU75SsDu+07CFveP9Lr0AAAAAAAAAAJqboL3DNDG8s4pIvPYJQL24CnQ9QI7vvAAAgD8AAIA/s1ANvewclLuST2E7/lmTPPrWEz2ysnq9AACAPwAAgD8ATnW8yN6BPyndljxFycC+gd5xvbBcoT0AAAAAAAAAADMMWL0JR60/q4+VvoXPm75qZNW9O1SHvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIO99PjRcZbkCUhpRSlIwBbJRNXwGMAXSUR0Cz9lsrNGExdX2UKGgGaAloD0MIvCL430rEcECUhpRSlGgVTZ4BaBZHQLP2llxffGd1fZQoaAZoCWgPQwgkmkARCyhrQJSGlFKUaBVNLAFoFkdAs/cDnZCfH3V9lChoBmgJaA9DCL/zixL0H29AlIaUUpRoFU1tAWgWR0Cz931zp5eJdX2UKGgGaAloD0MIzsEzoQnKcUCUhpRSlGgVTQMBaBZHQLP3lGax5cF1fZQoaAZoCWgPQwjJ5qp5jhdrQJSGlFKUaBVN5wFoFkdAs/fb3xnWa3V9lChoBmgJaA9DCDCBW3ezE3BAlIaUUpRoFU3SAWgWR0Cz9+Lpu/DcdX2UKGgGaAloD0MIs34zMV0+SkCUhpRSlGgVS9loFkdAs/h0M6RyO3V9lChoBmgJaA9DCNvdA3RfdE1AlIaUUpRoFUvkaBZHQLP41VG0/np1fZQoaAZoCWgPQwhFLGLY4d1vQJSGlFKUaBVNwQFoFkdAs/kvyMDOknV9lChoBmgJaA9DCN7KEp1lVW9AlIaUUpRoFU24AWgWR0Cz+UwEEC/5dX2UKGgGaAloD0MIAdvBiH04bUCUhpRSlGgVTTYBaBZHQLP5a0cwQDp1fZQoaAZoCWgPQwiY/E/+7sZrQJSGlFKUaBVNRgFoFkdAs/mI0XP7enV9lChoBmgJaA9DCJ3X2CWq2FFAlIaUUpRoFUvPaBZHQLP5iLGaQV91fZQoaAZoCWgPQwiLi6NyE29uQJSGlFKUaBVNlgJoFkdAs/m7EOy3TnV9lChoBmgJaA9DCF2LFqBthnBAlIaUUpRoFU30AWgWR0Cz+dtN34bkdX2UKGgGaAloD0MI42w6AjghckCUhpRSlGgVTfEBaBZHQLP6KmkWRA91fZQoaAZoCWgPQwjDLR9JSQZuQJSGlFKUaBVNRwJoFkdAs/qLpkf9xnV9lChoBmgJaA9DCKCkwAIYCHBAlIaUUpRoFU1kAWgWR0Cz+vHEIgNgdX2UKGgGaAloD0MIgzKNJpdZcECUhpRSlGgVTUkBaBZHQLP69Ge+VTt1fZQoaAZoCWgPQwjBxvXv+gRxQJSGlFKUaBVNTgFoFkdAs/wdIWgvlHV9lChoBmgJaA9DCF37AnohlnBAlIaUUpRoFU01AWgWR0C0R6tJvo/zdX2UKGgGaAloD0MII028A7yicECUhpRSlGgVTToBaBZHQLRH3gTyrgh1fZQoaAZoCWgPQwjWc9L7xl1xQJSGlFKUaBVNVwFoFkdAtEi6938n/nV9lChoBmgJaA9DCJq1FJB2xm9AlIaUUpRoFU0uAmgWR0C0SN5eJHiFdX2UKGgGaAloD0MInWSry6lqcECUhpRSlGgVTdEBaBZHQLRKDFvybx51fZQoaAZoCWgPQwgWpu81BINTQJSGlFKUaBVL12gWR0C0Spwdfb9IdX2UKGgGaAloD0MIHXHIBtKZcECUhpRSlGgVTXwBaBZHQLRKxC6H0sh1fZQoaAZoCWgPQwgFFytqMGVuQJSGlFKUaBVNjwFoFkdAtEsEfzSThnV9lChoBmgJaA9DCH9OQX62s29AlIaUUpRoFU0aAWgWR0C0S1PywwCbdX2UKGgGaAloD0MILsVVZZ8UcECUhpRSlGgVTW0CaBZHQLRLh8qWkad1fZQoaAZoCWgPQwhkdha909htQJSGlFKUaBVNJwJoFkdAtEvNt4zJp3V9lChoBmgJaA9DCC5W1GAa31RAlIaUUpRoFU3oA2gWR0C0S/IekpI+dX2UKGgGaAloD0MI88e0Ng3bcUCUhpRSlGgVTawCaBZHQLRMfjYI0Il1fZQoaAZoCWgPQwhCQSlaObVuQJSGlFKUaBVNrQFoFkdAtEydx0dRznV9lChoBmgJaA9DCPyLoDFT13JAlIaUUpRoFU3bA2gWR0C0TQ7lJYkndX2UKGgGaAloD0MIu9QI/cyNcUCUhpRSlGgVTXMCaBZHQLRNHhmoR7J1fZQoaAZoCWgPQwhGYKxvoK5xQJSGlFKUaBVNTgFoFkdAtE4Wf29L6HV9lChoBmgJaA9DCATLETKQKG5AlIaUUpRoFU28AWgWR0C0TiBxYJVsdX2UKGgGaAloD0MIOZhNgGHwb0CUhpRSlGgVTXoDaBZHQLROfcnE2pB1fZQoaAZoCWgPQwjwiXWqvJJwQJSGlFKUaBVNIgFoFkdAtE6nBguyvHV9lChoBmgJaA9DCMxgjEiUvmtAlIaUUpRoFU3kAWgWR0C0TrUyULUkdX2UKGgGaAloD0MIou9uZYkPXkCUhpRSlGgVTegDaBZHQLRO6f1pTMt1fZQoaAZoCWgPQwjTakjco/ZyQJSGlFKUaBVNsAFoFkdAtE+gu14PgHV9lChoBmgJaA9DCOKxn8VSgnFAlIaUUpRoFU2IAWgWR0C0UFUu6ErYdX2UKGgGaAloD0MIfjUHCOa0UECUhpRSlGgVS7poFkdAtFD7y08eS3V9lChoBmgJaA9DCK7wLhfxgVFAlIaUUpRoFU0AAWgWR0C0UPxNmDlHdX2UKGgGaAloD0MI7E0MyUlmckCUhpRSlGgVTWQBaBZHQLRRHm8dxQ11fZQoaAZoCWgPQwjByTZwByprQJSGlFKUaBVNFwJoFkdAtFEhhiLEUHV9lChoBmgJaA9DCKc9JedEV3BAlIaUUpRoFU2aAWgWR0C0UScA/9pAdX2UKGgGaAloD0MIYk7QJocFckCUhpRSlGgVTSsBaBZHQLRRtL5RCQd1fZQoaAZoCWgPQwiFQgQcQg5wQJSGlFKUaBVNRAJoFkdAtFHvrGBFu3V9lChoBmgJaA9DCExRLo2fxnFAlIaUUpRoFU3cAWgWR0C0UlG/BWPtdX2UKGgGaAloD0MI1lQWhZ3OcECUhpRSlGgVTZMBaBZHQLRSZfDUExJ1fZQoaAZoCWgPQwgpIVhVb1xxQJSGlFKUaBVNXwJoFkdAtFJwawUxmHV9lChoBmgJaA9DCK8I/rcS8nFAlIaUUpRoFU1+AWgWR0C0UqUg0TDgdX2UKGgGaAloD0MIIa6cvbN5cUCUhpRSlGgVTaIBaBZHQLSdZRuTA311fZQoaAZoCWgPQwjF5uPakORwQJSGlFKUaBVNdQFoFkdAtJ3GuZCv5nV9lChoBmgJaA9DCLpKd9dZ52xAlIaUUpRoFU1cAWgWR0C0nizTfBN3dX2UKGgGaAloD0MIWi+GcqJEckCUhpRSlGgVTVoBaBZHQLSe3ww0wal1fZQoaAZoCWgPQwjSN2kaFKNwQJSGlFKUaBVNbAFoFkdAtJ8YGorFwXV9lChoBmgJaA9DCHPVPEfk7G9AlIaUUpRoFU09AWgWR0C0n0B9XtBwdX2UKGgGaAloD0MIEhPU8C2Ob0CUhpRSlGgVTZIBaBZHQLSfYn1Fpfx1fZQoaAZoCWgPQwjO/dXjvsZyQJSGlFKUaBVNtgFoFkdAtJ/sl3QlbHV9lChoBmgJaA9DCEVmLnB51XBAlIaUUpRoFU0vAWgWR0C0n/JHRTjvdX2UKGgGaAloD0MIkIe+u5XVXUCUhpRSlGgVTegDaBZHQLSgBTcZccF1fZQoaAZoCWgPQwj9S1KZoutwQJSGlFKUaBVNzAFoFkdAtKAIWBSUDHV9lChoBmgJaA9DCFUxlX4CEHBAlIaUUpRoFU1WAWgWR0C0oEPiT+vRdX2UKGgGaAloD0MIHzAPmXJtckCUhpRSlGgVTZYBaBZHQLSgairT6SF1fZQoaAZoCWgPQwjzrnrAfMxyQJSGlFKUaBVNsgFoFkdAtKD4d0aIe3V9lChoBmgJaA9DCELO+/84L2NAlIaUUpRoFU3oA2gWR0C0oWKynk1edX2UKGgGaAloD0MIopdRLLecRkCUhpRSlGgVS7BoFkdAtKGVVMmF8HV9lChoBmgJaA9DCDQUd7xJX25AlIaUUpRoFU1/AWgWR0C0oZpLM9r5dX2UKGgGaAloD0MIM2/VdejRckCUhpRSlGgVTWwBaBZHQLShxd4mkWR1fZQoaAZoCWgPQwhXs874PgZyQJSGlFKUaBVN8gFoFkdAtKJCMuOCG3V9lChoBmgJaA9DCIGxvoFJPHNAlIaUUpRoFU1PAWgWR0C0okcxO+IudX2UKGgGaAloD0MID+7O2u2LcECUhpRSlGgVTSQCaBZHQLSiVvvjOs11fZQoaAZoCWgPQwjzWDMyyI0tQJSGlFKUaBVLbWgWR0C0oopD7ZWadX2UKGgGaAloD0MIyxMIOwUycECUhpRSlGgVTWgBaBZHQLSiskH2RJV1fZQoaAZoCWgPQwicps8OuAZvQJSGlFKUaBVNOQFoFkdAtKLMDKYAsHV9lChoBmgJaA9DCK358ZeWYmtAlIaUUpRoFU1FAWgWR0C0os9Frl/6dX2UKGgGaAloD0MILC0j9V6AcECUhpRSlGgVTWIBaBZHQLSjXp35eqt1fZQoaAZoCWgPQwg8vr1r0FVFQJSGlFKUaBVLnmgWR0C0o7FtXPqtdX2UKGgGaAloD0MIN6eSAaD+bECUhpRSlGgVTYMBaBZHQLSjzkpqh111fZQoaAZoCWgPQwj1K50PT79xQJSGlFKUaBVNMQFoFkdAtKQNx1gYxnV9lChoBmgJaA9DCN3NUx1yK3JAlIaUUpRoFU00AmgWR0C0pBJCF9KFdX2UKGgGaAloD0MIMqzijUxzcECUhpRSlGgVTRQCaBZHQLSkFIZIg/11fZQoaAZoCWgPQwiTVKaYg4txQJSGlFKUaBVNVgFoFkdAtKSOsijcmHV9lChoBmgJaA9DCA1slWBxCXBAlIaUUpRoFU0ZAmgWR0C0pKVHjIaMdX2UKGgGaAloD0MILNhGPNnJPECUhpRSlGgVS69oFkdAtKTm+XZ5A3V9lChoBmgJaA9DCGdg5GVNGHFAlIaUUpRoFU0MAWgWR0C0pQ+nl4kedX2UKGgGaAloD0MIy2lPyTkVcUCUhpRSlGgVTVQBaBZHQLSlRCK77Kt1fZQoaAZoCWgPQwg4Mo/8wX9sQJSGlFKUaBVNcQFoFkdAtKWTWnTAnHV9lChoBmgJaA9DCCXqBZ9m43BAlIaUUpRoFU2pAWgWR0C0pZNKqXF+dX2UKGgGaAloD0MIxqS/l8KZb0CUhpRSlGgVTU8BaBZHQLSl0VcUuct1fZQoaAZoCWgPQwi13JkJBkBuQJSGlFKUaBVNmwFoFkdAtKZAfms/6nV9lChoBmgJaA9DCKxWJvzSPXBAlIaUUpRoFU1JAmgWR0C0pkB3u/lAdX2UKGgGaAloD0MIjkC8rl8IcUCUhpRSlGgVTZwBaBZHQLSmir/Khct1fZQoaAZoCWgPQwhafuAqz0lxQJSGlFKUaBVNLQFoFkdAtKbbtgKF7HV9lChoBmgJaA9DCEMEHEIVkXBAlIaUUpRoFU1XAWgWR0C0pvqESM99dWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 4,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c6190bc452c0a56cfea8fdaa53d8e2a1cba48f207b0975703e36a45c335dfa1
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb2cb3f7be7b024224dd36a03c5c69d9e154a44c23f9394713f74da7e0910d31
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (209 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.4090305409191, "std_reward": 15.023712121162731, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T22:34:58.361326"}
|