haozhangphy commited on
Commit
eea76ab
·
1 Parent(s): 7d3424e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 266.75 +/- 18.07
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78c7d1e77370>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78c7d1e77400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78c7d1e77490>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78c7d1e77520>", "_build": "<function ActorCriticPolicy._build at 0x78c7d1e775b0>", "forward": "<function ActorCriticPolicy.forward at 0x78c7d1e77640>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78c7d1e776d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78c7d1e77760>", "_predict": "<function ActorCriticPolicy._predict at 0x78c7d1e777f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78c7d1e77880>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78c7d1e77910>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78c7d1e779a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78c7d20160c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694485001552349108, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZuIrxId466Be5fuZyOSrSSps46PumBOAAAgD8AAIA/+uIzvmlXvD6GkTU+QzidvidGIj0iM3I9AAAAAAAAAACzM3w9KQB9ulYdD7SPNlytejZzOtUsuTMAAIA/AACAP7PTOL3hHJK6kfqpN6I8pzLpCb26PeLEtgAAgD8AAIA//r+Nvk1SVb3B+QI7hxDyORIetz6qfDa6AACAPwAAgD+aGey67rW0vI7Vk71MW4a96TwMPgUytD4AAIA/AACAPzsZkL797229cid2u58WYrpfd80+ytjyOgAAgD8AAIA/M8NXOziP2bsrmsk6TLeRPEJoPT2j8XS9AACAPwAAgD8GgxW+WrSSP1Ncxb7ZwfW+4+Fdvoswg74AAAAAAAAAAO2iMr4gwKY+78E/P14iob6diNI9Cb/EPgAAAAAAAAAAABtoPY+ubbon8awzKjYvr65oabrsbcmzAACAPwAAgD8zY229qd9nPdzhnDsj9YK+VnGTvAuCa7wAAAAAAAAAAADK+bycl168d+KBvElGPzznnsM9dBQfvQAAgD8AAIA/MGuGviE4Az/NKtU9YmC2vuEV5b03zUI9AAAAAAAAAABQ026+shyHPw7ixL4CABy/u7mxvkE1Mr4AAAAAAAAAAABQBz0oVPk9Tx6Lvh/1mL6F/Di9rhM7PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHsuBUaQ3iMAWyUTZwBjAF0lEdAlXD6xxDLKXV9lChoBkdAcZzREnb7CWgHTRsBaAhHQJWCdEPUayd1fZQoaAZHQG4AyeqaPS5oB02mAWgIR0CVg31UVBUrdX2UKGgGR0BwW0w22oegaAdN8gJoCEdAlYaAL7XQMXV9lChoBkdAcem01ZTya2gHTRoBaAhHQJWG2VgQYk51fZQoaAZHQHDtTfBN21VoB01oAWgIR0CVh5C8OCoTdX2UKGgGR0Bx3tJz1bqyaAdNggFoCEdAlYfVvZRKpXV9lChoBkdAVC1Jsfq5b2gHS+doCEdAlYkFe0G/vnV9lChoBkdAceBrO7g882gHS/5oCEdAlYkakEcKgXV9lChoBkdAcXFNRFZxJmgHTSYBaAhHQJWKK+M6zVt1fZQoaAZHQHAQmSU1Q69oB00KAWgIR0CVilIYFaB7dX2UKGgGR0BzhZCJGe+VaAdNKwFoCEdAlYsebAk9lnV9lChoBkdAcalHTqjaf2gHTV0BaAhHQJWLSEoOQQt1fZQoaAZHQHJb8Of/WDpoB01cAWgIR0CVi7CPZIxydX2UKGgGR0Bw8M3n6l+FaAdNeANoCEdAlYvRFNL13HV9lChoBkdAczRBjWkJr2gHTV0BaAhHQJWOOF49ovl1fZQoaAZHQHG6FcpsoDxoB0vsaAhHQJWO7JEH+qB1fZQoaAZHQHALKQV9F4NoB01LAmgIR0CVj//M4cWCdX2UKGgGR0BxQj3Zf2K3aAdL9mgIR0CVkDq2SdOJdX2UKGgGR0Bxl1wsGxD9aAdNIwFoCEdAlZB71qWTo3V9lChoBkdAcY4x0uDjBGgHTQoBaAhHQJWQnyTY/V11fZQoaAZHQG9FLyUcGTtoB00JAWgIR0CVki/ZM+NcdX2UKGgGR0BxhiilBQenaAdNCwFoCEdAlZJbB42S+3V9lChoBkdAcdR+ee4Cp2gHS/5oCEdAlZQ2Y0EX+HV9lChoBkdAch+xOclPamgHTeIBaAhHQJWU0fGMn7Z1fZQoaAZHQHJlwYHgP3BoB008AWgIR0CVld9SMtK7dX2UKGgGR0BwJqkO7QLNaAdNGgFoCEdAlZaBHf/FSHV9lChoBkdAcaUO801qFmgHTUkBaAhHQJWX1mPHT7V1fZQoaAZHQHH13wgDA8BoB01RAWgIR0CVmMfuCwr2dX2UKGgGR0BxGZ9NN8E3aAdNigFoCEdAlZmWgzxgA3V9lChoBkdAcREdPLxI8WgHS/JoCEdAlZrJLdvbXnV9lChoBkdAcSJTAFgUlGgHTQUBaAhHQJWbVW5paid1fZQoaAZHQG22RgRbr1NoB00UAWgIR0CVnP0GeMAFdX2UKGgGR0ByVdBnjABUaAdNbQFoCEdAlZ3qXnhbW3V9lChoBkdAcMJE/0NBnmgHTV0BaAhHQJWeIaS9ugp1fZQoaAZHQFJDvSMLncNoB0uzaAhHQJWe5wMpgCx1fZQoaAZHQHEJdmUW2w5oB01xAWgIR0CVoXRB/qgRdX2UKGgGR0Bvy7+WGATaaAdNRwFoCEdAlaGPA9FF2HV9lChoBkdAcozpVS4vvmgHS/xoCEdAlaHh7zCk43V9lChoBkdAcK04oJAt4GgHTU4BaAhHQJWiDAoG6f91fZQoaAZHQHCClZ1V5rxoB01MAWgIR0CVpHCwKSgXdX2UKGgGR0Bu0fSSeRPoaAdNWwFoCEdAlaSOSjgydnV9lChoBkdAcrgzZpSJj2gHTRUBaAhHQJWk+7sfJV91fZQoaAZHQGzW7Kq4pc5oB00AAWgIR0CVpbQla8pTdX2UKGgGR0ByqOVeKKpDaAdNDAFoCEdAlaeJx3mmtXV9lChoBkdActT5XEIgNmgHTRkBaAhHQJWnltvXK8t1fZQoaAZHQFqm2Zy+6AhoB03oA2gIR0CVqHNUwSJ1dX2UKGgGR0BwFN8x9G7SaAdL8WgIR0CVqIbFCLMtdX2UKGgGR0BzJdmz0HyFaAdNdAFoCEdAlakVL8Jla3V9lChoBkdAb70NIbwSamgHTSsBaAhHQJWphjLB9Cx1fZQoaAZHQHEKsFlkH2RoB00dAWgIR0CVuvua4MF2dX2UKGgGR0BO1nKfWcz7aAdLqGgIR0CVu07laKUFdX2UKGgGR0BxiYkC3gDSaAdNBgFoCEdAlbvA9FF2FHV9lChoBkdAcSYEUj9n9WgHTVABaAhHQJW74vUSZjR1fZQoaAZHQHIeZQgs9SxoB00GAWgIR0CVvCTm4iHJdX2UKGgGR0BxmXdSEUTMaAdNRwFoCEdAlb3diH6/I3V9lChoBkdAcn8lBQemvWgHTVUBaAhHQJW+D/vOQhh1fZQoaAZHQHCycM/hVENoB00aAWgIR0CVvkjB2wFDdX2UKGgGR0Bub7gl4TsZaAdNDwFoCEdAlb7A9vCMxXV9lChoBkdAcgTJIUahpWgHS+VoCEdAlb+yg5BC2XV9lChoBkdAcha+glF+eGgHTSoBaAhHQJXBA13t8eF1fZQoaAZHQHHASJO32EloB01IAWgIR0CVwf6Hj6vadX2UKGgGR0Bt6LkbPyCnaAdNCwFoCEdAlcIoeYD1XnV9lChoBkdAcuTANG3F1mgHTTsBaAhHQJXCkV6/qPh1fZQoaAZHQG7OSP+4smRoB00vAWgIR0CVwtAhStNjdX2UKGgGR0BwwsjHGS6laAdNBgFoCEdAlcMnUhFEzHV9lChoBkdAcxvRaX8fm2gHTRIBaAhHQJXDLalDWsl1fZQoaAZHQHJWnRCx/utoB03AAWgIR0CVw0oZQ53ldX2UKGgGR0BywK9pRGc4aAdL52gIR0CVxPlHjIaMdX2UKGgGR0BwyhH/cWTHaAdL6mgIR0CVxUpKSPludX2UKGgGR0Bxe5j+aScLaAdNNwFoCEdAlcVT0th/iHV9lChoBkdAcIVLcKw6hmgHTVYBaAhHQJXF5ph4MWp1fZQoaAZHQG/zoM8YAKhoB00HAWgIR0CVxn5RCQcQdX2UKGgGR0BwGaN4qwyJaAdNfAFoCEdAlcba/RE4N3V9lChoBkdAcIPS2phnamgHTSsBaAhHQJXIooLG7z11fZQoaAZHQHGcAgX/HYJoB00LAWgIR0CVyeHcUM5PdX2UKGgGR0Bxi/IYFaB7aAdNCQFoCEdAlcn5HVf/m3V9lChoBkdAcMJIMz/IbWgHS/RoCEdAlcpIG+sYEXV9lChoBkdAcsxNliBoVWgHTQcBaAhHQJXKTJvHcUN1fZQoaAZHQG8NwtJ4B3loB01nAWgIR0CVzAh9srNGdX2UKGgGR0Bx7XcM3IdVaAdNJQFoCEdAlcwtLpRoAXV9lChoBkdAcirHBDXvpmgHTTEBaAhHQJXMa7GvOhV1fZQoaAZHQHDoS1Aqur9oB00RAWgIR0CVzXaSs8xLdX2UKGgGR0Bv5K+SKWLQaAdNFgFoCEdAlc37J4jbBXV9lChoBkdAbrUc/+sHSmgHTRkBaAhHQJXOCBTXJ5p1fZQoaAZHQHLMxuCPIXFoB01bAWgIR0CV0ebpeNT+dX2UKGgGR0BvtlKsdT5waAdNRAFoCEdAldJ8yad+X3V9lChoBkdAcqOe7L+xW2gHTVkBaAhHQJXS6Rhc7hh1fZQoaAZHQHC+Zid8RcxoB0v1aAhHQJXTYC2c8T11fZQoaAZHQG+/Xk5p8F9oB00YAWgIR0CV1bNT987ZdX2UKGgGR0BxeV43WFviaAdNJAFoCEdAldXB99c8knV9lChoBkdAcIqom5UcXGgHTWcBaAhHQJXW/YXfqHJ1fZQoaAZHQHHJ6kM1CPZoB0v9aAhHQJXXVLRKHwh1fZQoaAZHQHGueTV2A5JoB00YAWgIR0CV2BiCrcTKdX2UKGgGR0Bvx4Ox0MgEaAdNFQFoCEdAldgmmgrYoXV9lChoBkdAb2a6FM7EHmgHTQoBaAhHQJXaRdpqREF1fZQoaAZHQHNGAc94eLhoB02MAWgIR0CV2zLaEi+tdX2UKGgGR0BxWrWjGkvcaAdNOAFoCEdAldu1OGj9GnV9lChoBkdAcVyirksBhmgHS+JoCEdAld208vEjxHV9lChoBkdAcOz6asp5NWgHTQEBaAhHQJXe3tqpLmJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f067f9c00fa4d87d6731add4759c654931b0867cd5cb90b200204ce7b40f388
3
+ size 146734
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78c7d1e77370>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78c7d1e77400>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78c7d1e77490>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78c7d1e77520>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78c7d1e775b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78c7d1e77640>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78c7d1e776d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78c7d1e77760>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78c7d1e777f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78c7d1e77880>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78c7d1e77910>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78c7d1e779a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78c7d20160c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1694485001552349108,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZuIrxId466Be5fuZyOSrSSps46PumBOAAAgD8AAIA/+uIzvmlXvD6GkTU+QzidvidGIj0iM3I9AAAAAAAAAACzM3w9KQB9ulYdD7SPNlytejZzOtUsuTMAAIA/AACAP7PTOL3hHJK6kfqpN6I8pzLpCb26PeLEtgAAgD8AAIA//r+Nvk1SVb3B+QI7hxDyORIetz6qfDa6AACAPwAAgD+aGey67rW0vI7Vk71MW4a96TwMPgUytD4AAIA/AACAPzsZkL797229cid2u58WYrpfd80+ytjyOgAAgD8AAIA/M8NXOziP2bsrmsk6TLeRPEJoPT2j8XS9AACAPwAAgD8GgxW+WrSSP1Ncxb7ZwfW+4+Fdvoswg74AAAAAAAAAAO2iMr4gwKY+78E/P14iob6diNI9Cb/EPgAAAAAAAAAAABtoPY+ubbon8awzKjYvr65oabrsbcmzAACAPwAAgD8zY229qd9nPdzhnDsj9YK+VnGTvAuCa7wAAAAAAAAAAADK+bycl168d+KBvElGPzznnsM9dBQfvQAAgD8AAIA/MGuGviE4Az/NKtU9YmC2vuEV5b03zUI9AAAAAAAAAABQ026+shyHPw7ixL4CABy/u7mxvkE1Mr4AAAAAAAAAAABQBz0oVPk9Tx6Lvh/1mL6F/Di9rhM7PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHsuBUaQ3iMAWyUTZwBjAF0lEdAlXD6xxDLKXV9lChoBkdAcZzREnb7CWgHTRsBaAhHQJWCdEPUayd1fZQoaAZHQG4AyeqaPS5oB02mAWgIR0CVg31UVBUrdX2UKGgGR0BwW0w22oegaAdN8gJoCEdAlYaAL7XQMXV9lChoBkdAcem01ZTya2gHTRoBaAhHQJWG2VgQYk51fZQoaAZHQHDtTfBN21VoB01oAWgIR0CVh5C8OCoTdX2UKGgGR0Bx3tJz1bqyaAdNggFoCEdAlYfVvZRKpXV9lChoBkdAVC1Jsfq5b2gHS+doCEdAlYkFe0G/vnV9lChoBkdAceBrO7g882gHS/5oCEdAlYkakEcKgXV9lChoBkdAcXFNRFZxJmgHTSYBaAhHQJWKK+M6zVt1fZQoaAZHQHAQmSU1Q69oB00KAWgIR0CVilIYFaB7dX2UKGgGR0BzhZCJGe+VaAdNKwFoCEdAlYsebAk9lnV9lChoBkdAcalHTqjaf2gHTV0BaAhHQJWLSEoOQQt1fZQoaAZHQHJb8Of/WDpoB01cAWgIR0CVi7CPZIxydX2UKGgGR0Bw8M3n6l+FaAdNeANoCEdAlYvRFNL13HV9lChoBkdAczRBjWkJr2gHTV0BaAhHQJWOOF49ovl1fZQoaAZHQHG6FcpsoDxoB0vsaAhHQJWO7JEH+qB1fZQoaAZHQHALKQV9F4NoB01LAmgIR0CVj//M4cWCdX2UKGgGR0BxQj3Zf2K3aAdL9mgIR0CVkDq2SdOJdX2UKGgGR0Bxl1wsGxD9aAdNIwFoCEdAlZB71qWTo3V9lChoBkdAcY4x0uDjBGgHTQoBaAhHQJWQnyTY/V11fZQoaAZHQG9FLyUcGTtoB00JAWgIR0CVki/ZM+NcdX2UKGgGR0BxhiilBQenaAdNCwFoCEdAlZJbB42S+3V9lChoBkdAcdR+ee4Cp2gHS/5oCEdAlZQ2Y0EX+HV9lChoBkdAch+xOclPamgHTeIBaAhHQJWU0fGMn7Z1fZQoaAZHQHJlwYHgP3BoB008AWgIR0CVld9SMtK7dX2UKGgGR0BwJqkO7QLNaAdNGgFoCEdAlZaBHf/FSHV9lChoBkdAcaUO801qFmgHTUkBaAhHQJWX1mPHT7V1fZQoaAZHQHH13wgDA8BoB01RAWgIR0CVmMfuCwr2dX2UKGgGR0BxGZ9NN8E3aAdNigFoCEdAlZmWgzxgA3V9lChoBkdAcREdPLxI8WgHS/JoCEdAlZrJLdvbXnV9lChoBkdAcSJTAFgUlGgHTQUBaAhHQJWbVW5paid1fZQoaAZHQG22RgRbr1NoB00UAWgIR0CVnP0GeMAFdX2UKGgGR0ByVdBnjABUaAdNbQFoCEdAlZ3qXnhbW3V9lChoBkdAcMJE/0NBnmgHTV0BaAhHQJWeIaS9ugp1fZQoaAZHQFJDvSMLncNoB0uzaAhHQJWe5wMpgCx1fZQoaAZHQHEJdmUW2w5oB01xAWgIR0CVoXRB/qgRdX2UKGgGR0Bvy7+WGATaaAdNRwFoCEdAlaGPA9FF2HV9lChoBkdAcozpVS4vvmgHS/xoCEdAlaHh7zCk43V9lChoBkdAcK04oJAt4GgHTU4BaAhHQJWiDAoG6f91fZQoaAZHQHCClZ1V5rxoB01MAWgIR0CVpHCwKSgXdX2UKGgGR0Bu0fSSeRPoaAdNWwFoCEdAlaSOSjgydnV9lChoBkdAcrgzZpSJj2gHTRUBaAhHQJWk+7sfJV91fZQoaAZHQGzW7Kq4pc5oB00AAWgIR0CVpbQla8pTdX2UKGgGR0ByqOVeKKpDaAdNDAFoCEdAlaeJx3mmtXV9lChoBkdActT5XEIgNmgHTRkBaAhHQJWnltvXK8t1fZQoaAZHQFqm2Zy+6AhoB03oA2gIR0CVqHNUwSJ1dX2UKGgGR0BwFN8x9G7SaAdL8WgIR0CVqIbFCLMtdX2UKGgGR0BzJdmz0HyFaAdNdAFoCEdAlakVL8Jla3V9lChoBkdAb70NIbwSamgHTSsBaAhHQJWphjLB9Cx1fZQoaAZHQHEKsFlkH2RoB00dAWgIR0CVuvua4MF2dX2UKGgGR0BO1nKfWcz7aAdLqGgIR0CVu07laKUFdX2UKGgGR0BxiYkC3gDSaAdNBgFoCEdAlbvA9FF2FHV9lChoBkdAcSYEUj9n9WgHTVABaAhHQJW74vUSZjR1fZQoaAZHQHIeZQgs9SxoB00GAWgIR0CVvCTm4iHJdX2UKGgGR0BxmXdSEUTMaAdNRwFoCEdAlb3diH6/I3V9lChoBkdAcn8lBQemvWgHTVUBaAhHQJW+D/vOQhh1fZQoaAZHQHCycM/hVENoB00aAWgIR0CVvkjB2wFDdX2UKGgGR0Bub7gl4TsZaAdNDwFoCEdAlb7A9vCMxXV9lChoBkdAcgTJIUahpWgHS+VoCEdAlb+yg5BC2XV9lChoBkdAcha+glF+eGgHTSoBaAhHQJXBA13t8eF1fZQoaAZHQHHASJO32EloB01IAWgIR0CVwf6Hj6vadX2UKGgGR0Bt6LkbPyCnaAdNCwFoCEdAlcIoeYD1XnV9lChoBkdAcuTANG3F1mgHTTsBaAhHQJXCkV6/qPh1fZQoaAZHQG7OSP+4smRoB00vAWgIR0CVwtAhStNjdX2UKGgGR0BwwsjHGS6laAdNBgFoCEdAlcMnUhFEzHV9lChoBkdAcxvRaX8fm2gHTRIBaAhHQJXDLalDWsl1fZQoaAZHQHJWnRCx/utoB03AAWgIR0CVw0oZQ53ldX2UKGgGR0BywK9pRGc4aAdL52gIR0CVxPlHjIaMdX2UKGgGR0BwyhH/cWTHaAdL6mgIR0CVxUpKSPludX2UKGgGR0Bxe5j+aScLaAdNNwFoCEdAlcVT0th/iHV9lChoBkdAcIVLcKw6hmgHTVYBaAhHQJXF5ph4MWp1fZQoaAZHQG/zoM8YAKhoB00HAWgIR0CVxn5RCQcQdX2UKGgGR0BwGaN4qwyJaAdNfAFoCEdAlcba/RE4N3V9lChoBkdAcIPS2phnamgHTSsBaAhHQJXIooLG7z11fZQoaAZHQHGcAgX/HYJoB00LAWgIR0CVyeHcUM5PdX2UKGgGR0Bxi/IYFaB7aAdNCQFoCEdAlcn5HVf/m3V9lChoBkdAcMJIMz/IbWgHS/RoCEdAlcpIG+sYEXV9lChoBkdAcsxNliBoVWgHTQcBaAhHQJXKTJvHcUN1fZQoaAZHQG8NwtJ4B3loB01nAWgIR0CVzAh9srNGdX2UKGgGR0Bx7XcM3IdVaAdNJQFoCEdAlcwtLpRoAXV9lChoBkdAcirHBDXvpmgHTTEBaAhHQJXMa7GvOhV1fZQoaAZHQHDoS1Aqur9oB00RAWgIR0CVzXaSs8xLdX2UKGgGR0Bv5K+SKWLQaAdNFgFoCEdAlc37J4jbBXV9lChoBkdAbrUc/+sHSmgHTRkBaAhHQJXOCBTXJ5p1fZQoaAZHQHLMxuCPIXFoB01bAWgIR0CV0ebpeNT+dX2UKGgGR0BvtlKsdT5waAdNRAFoCEdAldJ8yad+X3V9lChoBkdAcqOe7L+xW2gHTVkBaAhHQJXS6Rhc7hh1fZQoaAZHQHC+Zid8RcxoB0v1aAhHQJXTYC2c8T11fZQoaAZHQG+/Xk5p8F9oB00YAWgIR0CV1bNT987ZdX2UKGgGR0BxeV43WFviaAdNJAFoCEdAldXB99c8knV9lChoBkdAcIqom5UcXGgHTWcBaAhHQJXW/YXfqHJ1fZQoaAZHQHHJ6kM1CPZoB0v9aAhHQJXXVLRKHwh1fZQoaAZHQHGueTV2A5JoB00YAWgIR0CV2BiCrcTKdX2UKGgGR0Bvx4Ox0MgEaAdNFQFoCEdAldgmmgrYoXV9lChoBkdAb2a6FM7EHmgHTQoBaAhHQJXaRdpqREF1fZQoaAZHQHNGAc94eLhoB02MAWgIR0CV2zLaEi+tdX2UKGgGR0BxWrWjGkvcaAdNOAFoCEdAldu1OGj9GnV9lChoBkdAcVyirksBhmgHS+JoCEdAld208vEjxHV9lChoBkdAcOz6asp5NWgHTQEBaAhHQJXe3tqpLmJ1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b14d1c3fc7f91aa1a835beb0ac4e4f1e83457e4e6ea7dabcc7ba4606087d9f06
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01fe634f96851a4e58f5fa0714313b8f690be567acfc944728603d59fea4cce6
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (179 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 266.75102963581895, "std_reward": 18.06913748175673, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-12T02:36:41.683256"}