Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +8 -8
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -2.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.75 +/- 0.78
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67bb5a317eec17936179ce0dc44e4f37705284e0d9d0e108aa8d8efb4c109484
|
3 |
+
size 108157
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[ 0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1687378283778800699,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPeHPPsbaIb3gLhM/PeHPPsbaIb3gLhM/PeHPPsbaIb3gLhM/PeHPPsbaIb3gLhM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsje8vqooxj5Ua0W/cf6KPysNzD+ltZa/kT20vw42sj9VLYq/b0LSv2eouz+9eTM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA94c8+xtohveAuEz8Pxi65CwoKu25OD7w94c8+xtohveAuEz8Pxi65CwoKu25OD7w94c8+xtohveAuEz8Pxi65CwoKu25OD7w94c8+xtohveAuEz8Pxi65CwoKu25OD7yUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.4060153 -0.03951528 0.574934 ]\n [ 0.4060153 -0.03951528 0.574934 ]\n [ 0.4060153 -0.03951528 0.574934 ]\n [ 0.4060153 -0.03951528 0.574934 ]]",
|
38 |
+
"desired_goal": "[[-0.36761242 0.387029 -0.77116895]\n [ 1.0858899 1.5941519 -1.1774184 ]\n [-1.4081289 1.3922746 -1.0795084 ]\n [-1.6426524 1.4660767 0.7010763 ]]",
|
39 |
+
"observation": "[[ 4.0601531e-01 -3.9515279e-02 5.7493401e-01 -1.6667716e-04\n -2.1063115e-03 -8.7467264e-03]\n [ 4.0601531e-01 -3.9515279e-02 5.7493401e-01 -1.6667716e-04\n -2.1063115e-03 -8.7467264e-03]\n [ 4.0601531e-01 -3.9515279e-02 5.7493401e-01 -1.6667716e-04\n -2.1063115e-03 -8.7467264e-03]\n [ 4.0601531e-01 -3.9515279e-02 5.7493401e-01 -1.6667716e-04\n -2.1063115e-03 -8.7467264e-03]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAc4tlPQr3aD2y7Sg+dxzaPSpkIT3OBoY+JiSdupL5BL5/i0g9qjg+u7EWSj2HtFM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.05604119 0.05687622 0.16496924]\n [ 0.1064996 0.03940216 0.26177067]\n [-0.00119889 -0.12985829 0.04896116]\n [-0.00290255 0.04933805 0.20674334]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDD7NyYusCMCUhpRSlIwBbJRLMowBdJRHQJevWK4x1xN1fZQoaAZoCWgPQwid1QJ7TMQFwJSGlFKUaBVLMmgWR0CXrr1aW5YpdX2UKGgGaAloD0MIFeRnI9fND8CUhpRSlGgVSzJoFkdAl636UaAFxHV9lChoBmgJaA9DCI6VmGcl7QPAlIaUUpRoFUsyaBZHQJetR6Uqx1R1fZQoaAZoCWgPQwjRH5p5cl0UwJSGlFKUaBVLMmgWR0CXsYUuL740dX2UKGgGaAloD0MImL1sO20tBMCUhpRSlGgVSzJoFkdAl7DpwKjSHHV9lChoBmgJaA9DCLQ7pBggUf+/lIaUUpRoFUsyaBZHQJewJv73wkR1fZQoaAZoCWgPQwiA1CZO7hcSwJSGlFKUaBVLMmgWR0CXr3UrTYukdX2UKGgGaAloD0MIC9EhcCTgFMCUhpRSlGgVSzJoFkdAl7OtDIBBA3V9lChoBmgJaA9DCP5HpkOnZwTAlIaUUpRoFUsyaBZHQJezEf9xZMd1fZQoaAZoCWgPQwjO4sXCEHn/v5SGlFKUaBVLMmgWR0CXsk7gbZOBdX2UKGgGaAloD0MI5xn7ko03EMCUhpRSlGgVSzJoFkdAl7GcA/9pAXV9lChoBmgJaA9DCFs//WfNjwfAlIaUUpRoFUsyaBZHQJe1xjslb/x1fZQoaAZoCWgPQwh/Z3v0hpsKwJSGlFKUaBVLMmgWR0CXtSqAz544dX2UKGgGaAloD0MI8wUtJGAkFsCUhpRSlGgVSzJoFkdAl7RoGt6ol3V9lChoBmgJaA9DCF8IOe//4wTAlIaUUpRoFUsyaBZHQJeztbD/EO11fZQoaAZoCWgPQwjXiGAcXNoMwJSGlFKUaBVLMmgWR0CXt+ye7L+xdX2UKGgGaAloD0MIlEp4Qq//AsCUhpRSlGgVSzJoFkdAl7dRAbADaHV9lChoBmgJaA9DCE5k5gKX5wLAlIaUUpRoFUsyaBZHQJe2jf8/D+B1fZQoaAZoCWgPQwjZJD/iV/wVwJSGlFKUaBVLMmgWR0CXtdr4FiazdX2UKGgGaAloD0MIgXaHFANkDcCUhpRSlGgVSzJoFkdAl7ooV6/qPnV9lChoBmgJaA9DCIih1ckZahDAlIaUUpRoFUsyaBZHQJe5jms/6ft1fZQoaAZoCWgPQwhVpMLYQnAYwJSGlFKUaBVLMmgWR0CXuM3gDRtxdX2UKGgGaAloD0MIh99Nt+wQFsCUhpRSlGgVSzJoFkdAl7gcmrsByXV9lChoBmgJaA9DCDwtP3CVBwrAlIaUUpRoFUsyaBZHQJe8YtkFwDN1fZQoaAZoCWgPQwjNV8nH7iILwJSGlFKUaBVLMmgWR0CXu8drO7g9dX2UKGgGaAloD0MIGcbdIFqr/b+UhpRSlGgVSzJoFkdAl7sEE1VHWnV9lChoBmgJaA9DCDsBTYQNHxHAlIaUUpRoFUsyaBZHQJe6UTzundh1fZQoaAZoCWgPQwhiEFg5tMgOwJSGlFKUaBVLMmgWR0CXv2dMj/uLdX2UKGgGaAloD0MImRJJ9DIqEcCUhpRSlGgVSzJoFkdAl77NuUD+znV9lChoBmgJaA9DCLyUumQcwwjAlIaUUpRoFUsyaBZHQJe+DCj1wo91fZQoaAZoCWgPQwiiC+pb5lQAwJSGlFKUaBVLMmgWR0CXvVsmfGuLdX2UKGgGaAloD0MIrMq+K4KfDsCUhpRSlGgVSzJoFkdAl8LzCLuQZHV9lChoBmgJaA9DCBxcOuY8IwfAlIaUUpRoFUsyaBZHQJfCXBoEjgR1fZQoaAZoCWgPQwig/rPmx58LwJSGlFKUaBVLMmgWR0CXwZrRjSXudX2UKGgGaAloD0MIA1yQLcsX/b+UhpRSlGgVSzJoFkdAl8DqRlpXZHV9lChoBmgJaA9DCGVUGcbdYPy/lIaUUpRoFUsyaBZHQJfGgJswco91fZQoaAZoCWgPQwjcZirEI1EHwJSGlFKUaBVLMmgWR0CXxeaUzKs/dX2UKGgGaAloD0MI9nmM8swLCMCUhpRSlGgVSzJoFkdAl8UmHpKSPnV9lChoBmgJaA9DCJ+PMuICkAfAlIaUUpRoFUsyaBZHQJfEdN21Ul11fZQoaAZoCWgPQwh8KxIT1FACwJSGlFKUaBVLMmgWR0CXyk1QZXMhdX2UKGgGaAloD0MIxy3m54bmAsCUhpRSlGgVSzJoFkdAl8mzs2NvO3V9lChoBmgJaA9DCKkWEcXkzQTAlIaUUpRoFUsyaBZHQJfI9AVwgkl1fZQoaAZoCWgPQwgHeqhtw+gGwJSGlFKUaBVLMmgWR0CXyEOkLx7RdX2UKGgGaAloD0MIMXxETIlk/L+UhpRSlGgVSzJoFkdAl84YuscQy3V9lChoBmgJaA9DCErP9BJjWQrAlIaUUpRoFUsyaBZHQJfNfz9S/CZ1fZQoaAZoCWgPQwhp4h3gSWsBwJSGlFKUaBVLMmgWR0CXzL3nIQvpdX2UKGgGaAloD0MIlExO7QxzC8CUhpRSlGgVSzJoFkdAl8wNNBWxQnV9lChoBmgJaA9DCPZdEfxvtRHAlIaUUpRoFUsyaBZHQJfSDt8eCCl1fZQoaAZoCWgPQwhhp1g1CNMNwJSGlFKUaBVLMmgWR0CX0XWLP2PDdX2UKGgGaAloD0MIVz1gHjIlBMCUhpRSlGgVSzJoFkdAl9C0cKgIyHV9lChoBmgJaA9DCErvG197JhHAlIaUUpRoFUsyaBZHQJfQA1TBInV1fZQoaAZoCWgPQwgfniXICGj/v5SGlFKUaBVLMmgWR0CX1di4J/oadX2UKGgGaAloD0MIjILg8e2dA8CUhpRSlGgVSzJoFkdAl9U+7cwg1XV9lChoBmgJaA9DCE33OqkvCwjAlIaUUpRoFUsyaBZHQJfUfgtOEdx1fZQoaAZoCWgPQwi+3ZIcsMsDwJSGlFKUaBVLMmgWR0CX08x5LRKIdX2UKGgGaAloD0MIbVm+LsMfCMCUhpRSlGgVSzJoFkdAl9gls1sLv3V9lChoBmgJaA9DCPVMLzGWKf+/lIaUUpRoFUsyaBZHQJfXioxYaHd1fZQoaAZoCWgPQwgrL/mf/B0FwJSGlFKUaBVLMmgWR0CX1sd1uBMBdX2UKGgGaAloD0MIz9xDwvf+CMCUhpRSlGgVSzJoFkdAl9YU2LpA2XV9lChoBmgJaA9DCB7ec2A5IgLAlIaUUpRoFUsyaBZHQJfaUHZ9NN91fZQoaAZoCWgPQwjObi2T4fgMwJSGlFKUaBVLMmgWR0CX2bUsFt9AdX2UKGgGaAloD0MIW86luKqsCcCUhpRSlGgVSzJoFkdAl9jx3JPqLXV9lChoBmgJaA9DCNgrLLgfMBXAlIaUUpRoFUsyaBZHQJfYPv8ZUDN1fZQoaAZoCWgPQwiq9BPObi0GwJSGlFKUaBVLMmgWR0CX3GwV0tAcdX2UKGgGaAloD0MIyxMIO8UKAsCUhpRSlGgVSzJoFkdAl9vQZTAFgXV9lChoBmgJaA9DCEvJchJKbxHAlIaUUpRoFUsyaBZHQJfbDXI2fkF1fZQoaAZoCWgPQwjKarqe6MoUwJSGlFKUaBVLMmgWR0CX2lsF+uvEdX2UKGgGaAloD0MIIM8u3/rQE8CUhpRSlGgVSzJoFkdAl96G3BpHqnV9lChoBmgJaA9DCBe86CtIkwrAlIaUUpRoFUsyaBZHQJfd66I3zc11fZQoaAZoCWgPQwjakH9mEL8DwJSGlFKUaBVLMmgWR0CX3SiNKh+OdX2UKGgGaAloD0MI4Sh5dY7BA8CUhpRSlGgVSzJoFkdAl9x13EAHV3V9lChoBmgJaA9DCKAzaVN1z/u/lIaUUpRoFUsyaBZHQJfgoWtU4rB1fZQoaAZoCWgPQwh/3lSkwlgDwJSGlFKUaBVLMmgWR0CX4AYHgP3BdX2UKGgGaAloD0MIKc3mcRhMDcCUhpRSlGgVSzJoFkdAl99DLB9Cu3V9lChoBmgJaA9DCOvjoe9uxRLAlIaUUpRoFUsyaBZHQJfekBxPwd91fZQoaAZoCWgPQwhfmbfqOrQBwJSGlFKUaBVLMmgWR0CX4uQUHpr2dX2UKGgGaAloD0MIVU0QdR8ACcCUhpRSlGgVSzJoFkdAl+JLz5GjK3V9lChoBmgJaA9DCK4s0VlmMQLAlIaUUpRoFUsyaBZHQJfhidVea8Z1fZQoaAZoCWgPQwgB+KdUiVIMwJSGlFKUaBVLMmgWR0CX4NimEXchdX2UKGgGaAloD0MIEATI0LEDA8CUhpRSlGgVSzJoFkdAl+UNIbwSanV9lChoBmgJaA9DCJcbDHVYgQLAlIaUUpRoFUsyaBZHQJfkcYBNmDl1fZQoaAZoCWgPQwgAVkeOdAYFwJSGlFKUaBVLMmgWR0CX464cWCVbdX2UKGgGaAloD0MIVb/S+fDsC8CUhpRSlGgVSzJoFkdAl+L7J0W/J3V9lChoBmgJaA9DCJM2VffIZgDAlIaUUpRoFUsyaBZHQJfnQC3gDRt1fZQoaAZoCWgPQwhan3JMFocVwJSGlFKUaBVLMmgWR0CX5qSeiBXkdX2UKGgGaAloD0MI4nK8AtHzBMCUhpRSlGgVSzJoFkdAl+Xhz7uUlnV9lChoBmgJaA9DCOIftvRoSgLAlIaUUpRoFUsyaBZHQJflLr+o99t1fZQoaAZoCWgPQwiCV8udmRATwJSGlFKUaBVLMmgWR0CX6V4tpVS5dX2UKGgGaAloD0MIh1J7EW0HBcCUhpRSlGgVSzJoFkdAl+jCnHeaa3V9lChoBmgJaA9DCBPU8C2smxXAlIaUUpRoFUsyaBZHQJfn/5bhWHV1fZQoaAZoCWgPQwj/d0SF6iYFwJSGlFKUaBVLMmgWR0CX500hePaMdX2UKGgGaAloD0MIXg8mxcenBcCUhpRSlGgVSzJoFkdAl+udXYDkl3V9lChoBmgJaA9DCIhnCTICCgLAlIaUUpRoFUsyaBZHQJfrAg4ffXR1fZQoaAZoCWgPQwg0gSIWMawSwJSGlFKUaBVLMmgWR0CX6j7p3X7MdX2UKGgGaAloD0MIFwyuuaP/B8CUhpRSlGgVSzJoFkdAl+mL3wkPc3V9lChoBmgJaA9DCA1TW+ogzwLAlIaUUpRoFUsyaBZHQJftsxKxs2x1fZQoaAZoCWgPQwhdTgmISdgDwJSGlFKUaBVLMmgWR0CX7ReMQ2/BdX2UKGgGaAloD0MIB7KeWn1VBMCUhpRSlGgVSzJoFkdAl+xUOiFj/nV9lChoBmgJaA9DCAjnU8cqBQTAlIaUUpRoFUsyaBZHQJfroSeyzHF1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e927e4cb6ea989e3a5a0412cea5c5016ba7852c63b9888f18e737d0ab4720e3
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ca80978b08e010f0ad137a4901a7d4e77cda79b9ec65a5d60f7d1f3283a9683
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f468f3cb520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f468f3bff80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687376531447904222, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKKbJPncPi7xtuhI/KKbJPncPi7xtuhI/KKbJPncPi7xtuhI/KKbJPncPi7xtuhI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAn6KCP7W7v78iYBS/d8jyvoPQlD+bZ8i/ZtZWvo5MjL/KljK/NDHYv1qbur/GPBi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAopsk+dw+LvG26Ej/b5RS8p448u1EujDsopsk+dw+LvG26Ej/b5RS8p448u1EujDsopsk+dw+LvG26Ej/b5RS8p448u1EujDsopsk+dw+LvG26Ej/b5RS8p448u1EujDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3938458 -0.01697515 0.57315713]\n [ 0.3938458 -0.01697515 0.57315713]\n [ 0.3938458 -0.01697515 0.57315713]\n [ 0.3938458 -0.01697515 0.57315713]]", "desired_goal": "[[ 1.0205878 -1.4979159 -0.5795919 ]\n [-0.47418568 1.1626133 -1.5656618 ]\n [-0.20980224 -1.0960863 -0.69761336]\n [-1.6890016 -1.457866 -0.5946773 ]]", "observation": "[[ 0.3938458 -0.01697515 0.57315713 -0.009088 -0.00287716 0.00427798]\n [ 0.3938458 -0.01697515 0.57315713 -0.009088 -0.00287716 0.00427798]\n [ 0.3938458 -0.01697515 0.57315713 -0.009088 -0.00287716 0.00427798]\n [ 0.3938458 -0.01697515 0.57315713 -0.009088 -0.00287716 0.00427798]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIea/vWDR6rtA8aY9cHMNvtE/CL7xULw9wN0zPUwZ+D1R0q08GkPjPWhMnT2xvkg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09370065 -0.00716607 0.08151484]\n [-0.13813567 -0.13305594 0.09195126]\n [ 0.04391265 0.121142 0.02121845]\n [ 0.11096783 0.07680589 0.19603993]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz7pGy4Ge/L+UhpRSlIwBbJRLMowBdJRHQJefMZGax5d1fZQoaAZoCWgPQwh/vi1YqqsBwJSGlFKUaBVLMmgWR0CXnsE4NqgzdX2UKGgGaAloD0MIvmiPF9IBBMCUhpRSlGgVSzJoFkdAl55Mfms/6nV9lChoBmgJaA9DCMx9chQgqhDAlIaUUpRoFUsyaBZHQJedvkLhJiB1fZQoaAZoCWgPQwhfmiLA6Z3+v5SGlFKUaBVLMmgWR0CXotObRWtEdX2UKGgGaAloD0MIuRyvQPSkAMCUhpRSlGgVSzJoFkdAl6JkDuBtlHV9lChoBmgJaA9DCPj7xWzJigbAlIaUUpRoFUsyaBZHQJeh8IldC3R1fZQoaAZoCWgPQwhZT62+uir5v5SGlFKUaBVLMmgWR0CXoWHM2WIHdX2UKGgGaAloD0MIWmYRiq0AB8CUhpRSlGgVSzJoFkdAl6ZwFgUlA3V9lChoBmgJaA9DCNMtO8Q/7BDAlIaUUpRoFUsyaBZHQJemATXarWB1fZQoaAZoCWgPQwgpBd1e0pj2v5SGlFKUaBVLMmgWR0CXpY0aIeo2dX2UKGgGaAloD0MIv9TPm4q0A8CUhpRSlGgVSzJoFkdAl6T/NRm9QHV9lChoBmgJaA9DCCv7rgj+dwrAlIaUUpRoFUsyaBZHQJeqLWWhRIl1fZQoaAZoCWgPQwgvMCsU6R4DwJSGlFKUaBVLMmgWR0CXqb5Jsfq5dX2UKGgGaAloD0MI8kQQ5+GEAsCUhpRSlGgVSzJoFkdAl6lKt5le4XV9lChoBmgJaA9DCG0CDMufLwTAlIaUUpRoFUsyaBZHQJeovPOY6XB1fZQoaAZoCWgPQwgFiIIZU5ADwJSGlFKUaBVLMmgWR0CXrdtvn8sMdX2UKGgGaAloD0MId4TTghfdAMCUhpRSlGgVSzJoFkdAl61r0rbxmXV9lChoBmgJaA9DCHU6kPXUqgXAlIaUUpRoFUsyaBZHQJes93X7LuB1fZQoaAZoCWgPQwhlNPJ5xRMKwJSGlFKUaBVLMmgWR0CXrGol2NeddX2UKGgGaAloD0MIoBov3SRmAcCUhpRSlGgVSzJoFkdAl7A+eOGTLXV9lChoBmgJaA9DCGx8JvvnKQDAlIaUUpRoFUsyaBZHQJevzMEA5rB1fZQoaAZoCWgPQwgGSZ9W0T8UwJSGlFKUaBVLMmgWR0CXr1Z9/jKgdX2UKGgGaAloD0MIQGg9fJm4EcCUhpRSlGgVSzJoFkdAl67GyC4Bm3V9lChoBmgJaA9DCLAbti3KzAvAlIaUUpRoFUsyaBZHQJeyQTewcHZ1fZQoaAZoCWgPQwjK4ZNOJJgEwJSGlFKUaBVLMmgWR0CXsc9qUNaydX2UKGgGaAloD0MIXpz4akdxDMCUhpRSlGgVSzJoFkdAl7FZRO1v23V9lChoBmgJaA9DCB/Y8V8g6AXAlIaUUpRoFUsyaBZHQJewybmU4aR1fZQoaAZoCWgPQwgS+wRQjKz9v5SGlFKUaBVLMmgWR0CXtDE5hjOLdX2UKGgGaAloD0MI9pUH6SmyFMCUhpRSlGgVSzJoFkdAl7PAAZKnN3V9lChoBmgJaA9DCE7tDFNbKve/lIaUUpRoFUsyaBZHQJezSYKIBR11fZQoaAZoCWgPQwhfCaTErm0FwJSGlFKUaBVLMmgWR0CXsrpnYg7pdX2UKGgGaAloD0MIGcizy7cOEMCUhpRSlGgVSzJoFkdAl7Y5UDMeOnV9lChoBmgJaA9DCJFDxM2pxAHAlIaUUpRoFUsyaBZHQJe1yA2AG0N1fZQoaAZoCWgPQwhV98jmqpkDwJSGlFKUaBVLMmgWR0CXtVJlrdnCdX2UKGgGaAloD0MI7rPKTGk9B8CUhpRSlGgVSzJoFkdAl7TDCDVYp3V9lChoBmgJaA9DCNp0BHCzGAvAlIaUUpRoFUsyaBZHQJe4XtXxOL11fZQoaAZoCWgPQwjDDfj8MIIMwJSGlFKUaBVLMmgWR0CXt+2Rq46PdX2UKGgGaAloD0MILnb7rDLzC8CUhpRSlGgVSzJoFkdAl7d4I8hcJXV9lChoBmgJaA9DCP+R6dDpuRTAlIaUUpRoFUsyaBZHQJe26L5ylvZ1fZQoaAZoCWgPQwjFHAQdrQoGwJSGlFKUaBVLMmgWR0CXum+4b0e2dX2UKGgGaAloD0MI8fYgBOTLBcCUhpRSlGgVSzJoFkdAl7oAD/2kBXV9lChoBmgJaA9DCDCca5ihUQrAlIaUUpRoFUsyaBZHQJe5ij/Mnqp1fZQoaAZoCWgPQwiNXaJ6a4ABwJSGlFKUaBVLMmgWR0CXuPqvvBrOdX2UKGgGaAloD0MIrK3YX3ZPCMCUhpRSlGgVSzJoFkdAl7yhrBTGYXV9lChoBmgJaA9DCC+JsyJqAg3AlIaUUpRoFUsyaBZHQJe8MAo5PuZ1fZQoaAZoCWgPQwjUfQBSm/gOwJSGlFKUaBVLMmgWR0CXu7pZwGW2dX2UKGgGaAloD0MIxapBmNt9EsCUhpRSlGgVSzJoFkdAl7sq3qiXY3V9lChoBmgJaA9DCLAe963WqQnAlIaUUpRoFUsyaBZHQJe+niT+vQp1fZQoaAZoCWgPQwiDUrRyL7ADwJSGlFKUaBVLMmgWR0CXvizPKMefdX2UKGgGaAloD0MI+6wyU1q//b+UhpRSlGgVSzJoFkdAl7221D0Dl3V9lChoBmgJaA9DCPp9/+bFyQbAlIaUUpRoFUsyaBZHQJe9Jr30wrV1fZQoaAZoCWgPQwgrM6X1twQNwJSGlFKUaBVLMmgWR0CXwKfhddE9dX2UKGgGaAloD0MI1NNH4A+fBcCUhpRSlGgVSzJoFkdAl8A2wqy4WnV9lChoBmgJaA9DCH80nDI3XwvAlIaUUpRoFUsyaBZHQJe/wX/HYHx1fZQoaAZoCWgPQwgBhuXPt6UCwJSGlFKUaBVLMmgWR0CXvzF6Rhc8dX2UKGgGaAloD0MIjZsaaD7HAMCUhpRSlGgVSzJoFkdAl8KwZGax5nV9lChoBmgJaA9DCDnv/+OEaQHAlIaUUpRoFUsyaBZHQJfCPwBo24x1fZQoaAZoCWgPQwiloNtLGiMBwJSGlFKUaBVLMmgWR0CXwcjs2NvPdX2UKGgGaAloD0MI+z+H+fJiCcCUhpRSlGgVSzJoFkdAl8E5RGc4HXV9lChoBmgJaA9DCBvxZDczuvm/lIaUUpRoFUsyaBZHQJfEvbh3qzJ1fZQoaAZoCWgPQwjxuKgWEeUBwJSGlFKUaBVLMmgWR0CXxEx0dRzjdX2UKGgGaAloD0MIaHdIMUBi+7+UhpRSlGgVSzJoFkdAl8PWWldka3V9lChoBmgJaA9DCGCvsOB+0BDAlIaUUpRoFUsyaBZHQJfDRk/bCaZ1fZQoaAZoCWgPQwgG8YEd/yUAwJSGlFKUaBVLMmgWR0CXxsZr56+ndX2UKGgGaAloD0MIAd9t3jiJBMCUhpRSlGgVSzJoFkdAl8ZVEAo5P3V9lChoBmgJaA9DCAVsByP2KQ7AlIaUUpRoFUsyaBZHQJfF3pdKNAF1fZQoaAZoCWgPQwhhjbPpCKAMwJSGlFKUaBVLMmgWR0CXxU9gWrOrdX2UKGgGaAloD0MIKEnXTL4Z/r+UhpRSlGgVSzJoFkdAl8jnYL9deXV9lChoBmgJaA9DCBhBYyZRbwzAlIaUUpRoFUsyaBZHQJfIdf/m1Y11fZQoaAZoCWgPQwgczZGVXwYCwJSGlFKUaBVLMmgWR0CXyAAVO9FndX2UKGgGaAloD0MIyJdQweGlD8CUhpRSlGgVSzJoFkdAl8dwuZkTYnV9lChoBmgJaA9DCAhagSGrGwXAlIaUUpRoFUsyaBZHQJfK1SaVlf91fZQoaAZoCWgPQwjVCP1MvS4EwJSGlFKUaBVLMmgWR0CXymNwzch1dX2UKGgGaAloD0MI4lzDDI1nC8CUhpRSlGgVSzJoFkdAl8ntgfEGaHV9lChoBmgJaA9DCGsqi8IuSgfAlIaUUpRoFUsyaBZHQJfJXXd0q6R1fZQoaAZoCWgPQwiTGARWDu0KwJSGlFKUaBVLMmgWR0CXzMgKF7D3dX2UKGgGaAloD0MIpztPPGcL+r+UhpRSlGgVSzJoFkdAl8xWUbDMvHV9lChoBmgJaA9DCIC21awzfgLAlIaUUpRoFUsyaBZHQJfL4CDEm6Z1fZQoaAZoCWgPQwhvnuqQm+EFwJSGlFKUaBVLMmgWR0CXy1CHymQ9dX2UKGgGaAloD0MI44qLo3JzC8CUhpRSlGgVSzJoFkdAl87TQE6kqXV9lChoBmgJaA9DCML4adybvwHAlIaUUpRoFUsyaBZHQJfOYcT8HfN1fZQoaAZoCWgPQwgGEalpF3MDwJSGlFKUaBVLMmgWR0CXzeu3c580dX2UKGgGaAloD0MIWkjA6PIGCcCUhpRSlGgVSzJoFkdAl81cKTjebnV9lChoBmgJaA9DCGyU9ZuJ6QLAlIaUUpRoFUsyaBZHQJfQ65mRNh51fZQoaAZoCWgPQwjajxSRYdX+v5SGlFKUaBVLMmgWR0CX0HoxHoX9dX2UKGgGaAloD0MI7ZklAWqKAcCUhpRSlGgVSzJoFkdAl9AEVSGahHV9lChoBmgJaA9DCJG3XP3YBA3AlIaUUpRoFUsyaBZHQJfPdJTVDrt1fZQoaAZoCWgPQwjqr1dYcD8CwJSGlFKUaBVLMmgWR0CX0ucCHRCydX2UKGgGaAloD0MI5xw8E5rEBcCUhpRSlGgVSzJoFkdAl9J1zltCRnV9lChoBmgJaA9DCEllijkIevK/lIaUUpRoFUsyaBZHQJfR/9YOlO51fZQoaAZoCWgPQwhfKcsQx9oJwJSGlFKUaBVLMmgWR0CX0W/5ckdFdX2UKGgGaAloD0MIEDy+vWvQ+r+UhpRSlGgVSzJoFkdAl9UB3eN1hnV9lChoBmgJaA9DCATJO4cyNAbAlIaUUpRoFUsyaBZHQJfUkFgUlAx1fZQoaAZoCWgPQwilSpS9pdz+v5SGlFKUaBVLMmgWR0CX1Bo8ZDRddX2UKGgGaAloD0MIkbkyqDZ49L+UhpRSlGgVSzJoFkdAl9OKtLcsUnV9lChoBmgJaA9DCD19BP7ws/C/lIaUUpRoFUsyaBZHQJfXbVAiV0N1fZQoaAZoCWgPQwjNID6w458KwJSGlFKUaBVLMmgWR0CX1v1CgK4QdX2UKGgGaAloD0MIUpyjjo4r/L+UhpRSlGgVSzJoFkdAl9aI3aSLZXV9lChoBmgJaA9DCL+36c9+BAnAlIaUUpRoFUsyaBZHQJfV+mO2iL51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f468f3cb520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f468f3bff80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687378283778800699, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAPeHPPsbaIb3gLhM/PeHPPsbaIb3gLhM/PeHPPsbaIb3gLhM/PeHPPsbaIb3gLhM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsje8vqooxj5Ua0W/cf6KPysNzD+ltZa/kT20vw42sj9VLYq/b0LSv2eouz+9eTM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA94c8+xtohveAuEz8Pxi65CwoKu25OD7w94c8+xtohveAuEz8Pxi65CwoKu25OD7w94c8+xtohveAuEz8Pxi65CwoKu25OD7w94c8+xtohveAuEz8Pxi65CwoKu25OD7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4060153 -0.03951528 0.574934 ]\n [ 0.4060153 -0.03951528 0.574934 ]\n [ 0.4060153 -0.03951528 0.574934 ]\n [ 0.4060153 -0.03951528 0.574934 ]]", "desired_goal": "[[-0.36761242 0.387029 -0.77116895]\n [ 1.0858899 1.5941519 -1.1774184 ]\n [-1.4081289 1.3922746 -1.0795084 ]\n [-1.6426524 1.4660767 0.7010763 ]]", "observation": "[[ 4.0601531e-01 -3.9515279e-02 5.7493401e-01 -1.6667716e-04\n -2.1063115e-03 -8.7467264e-03]\n [ 4.0601531e-01 -3.9515279e-02 5.7493401e-01 -1.6667716e-04\n -2.1063115e-03 -8.7467264e-03]\n [ 4.0601531e-01 -3.9515279e-02 5.7493401e-01 -1.6667716e-04\n -2.1063115e-03 -8.7467264e-03]\n [ 4.0601531e-01 -3.9515279e-02 5.7493401e-01 -1.6667716e-04\n -2.1063115e-03 -8.7467264e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAc4tlPQr3aD2y7Sg+dxzaPSpkIT3OBoY+JiSdupL5BL5/i0g9qjg+u7EWSj2HtFM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05604119 0.05687622 0.16496924]\n [ 0.1064996 0.03940216 0.26177067]\n [-0.00119889 -0.12985829 0.04896116]\n [-0.00290255 0.04933805 0.20674334]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDD7NyYusCMCUhpRSlIwBbJRLMowBdJRHQJevWK4x1xN1fZQoaAZoCWgPQwid1QJ7TMQFwJSGlFKUaBVLMmgWR0CXrr1aW5YpdX2UKGgGaAloD0MIFeRnI9fND8CUhpRSlGgVSzJoFkdAl636UaAFxHV9lChoBmgJaA9DCI6VmGcl7QPAlIaUUpRoFUsyaBZHQJetR6Uqx1R1fZQoaAZoCWgPQwjRH5p5cl0UwJSGlFKUaBVLMmgWR0CXsYUuL740dX2UKGgGaAloD0MImL1sO20tBMCUhpRSlGgVSzJoFkdAl7DpwKjSHHV9lChoBmgJaA9DCLQ7pBggUf+/lIaUUpRoFUsyaBZHQJewJv73wkR1fZQoaAZoCWgPQwiA1CZO7hcSwJSGlFKUaBVLMmgWR0CXr3UrTYukdX2UKGgGaAloD0MIC9EhcCTgFMCUhpRSlGgVSzJoFkdAl7OtDIBBA3V9lChoBmgJaA9DCP5HpkOnZwTAlIaUUpRoFUsyaBZHQJezEf9xZMd1fZQoaAZoCWgPQwjO4sXCEHn/v5SGlFKUaBVLMmgWR0CXsk7gbZOBdX2UKGgGaAloD0MI5xn7ko03EMCUhpRSlGgVSzJoFkdAl7GcA/9pAXV9lChoBmgJaA9DCFs//WfNjwfAlIaUUpRoFUsyaBZHQJe1xjslb/x1fZQoaAZoCWgPQwh/Z3v0hpsKwJSGlFKUaBVLMmgWR0CXtSqAz544dX2UKGgGaAloD0MI8wUtJGAkFsCUhpRSlGgVSzJoFkdAl7RoGt6ol3V9lChoBmgJaA9DCF8IOe//4wTAlIaUUpRoFUsyaBZHQJeztbD/EO11fZQoaAZoCWgPQwjXiGAcXNoMwJSGlFKUaBVLMmgWR0CXt+ye7L+xdX2UKGgGaAloD0MIlEp4Qq//AsCUhpRSlGgVSzJoFkdAl7dRAbADaHV9lChoBmgJaA9DCE5k5gKX5wLAlIaUUpRoFUsyaBZHQJe2jf8/D+B1fZQoaAZoCWgPQwjZJD/iV/wVwJSGlFKUaBVLMmgWR0CXtdr4FiazdX2UKGgGaAloD0MIgXaHFANkDcCUhpRSlGgVSzJoFkdAl7ooV6/qPnV9lChoBmgJaA9DCIih1ckZahDAlIaUUpRoFUsyaBZHQJe5jms/6ft1fZQoaAZoCWgPQwhVpMLYQnAYwJSGlFKUaBVLMmgWR0CXuM3gDRtxdX2UKGgGaAloD0MIh99Nt+wQFsCUhpRSlGgVSzJoFkdAl7gcmrsByXV9lChoBmgJaA9DCDwtP3CVBwrAlIaUUpRoFUsyaBZHQJe8YtkFwDN1fZQoaAZoCWgPQwjNV8nH7iILwJSGlFKUaBVLMmgWR0CXu8drO7g9dX2UKGgGaAloD0MIGcbdIFqr/b+UhpRSlGgVSzJoFkdAl7sEE1VHWnV9lChoBmgJaA9DCDsBTYQNHxHAlIaUUpRoFUsyaBZHQJe6UTzundh1fZQoaAZoCWgPQwhiEFg5tMgOwJSGlFKUaBVLMmgWR0CXv2dMj/uLdX2UKGgGaAloD0MImRJJ9DIqEcCUhpRSlGgVSzJoFkdAl77NuUD+znV9lChoBmgJaA9DCLyUumQcwwjAlIaUUpRoFUsyaBZHQJe+DCj1wo91fZQoaAZoCWgPQwiiC+pb5lQAwJSGlFKUaBVLMmgWR0CXvVsmfGuLdX2UKGgGaAloD0MIrMq+K4KfDsCUhpRSlGgVSzJoFkdAl8LzCLuQZHV9lChoBmgJaA9DCBxcOuY8IwfAlIaUUpRoFUsyaBZHQJfCXBoEjgR1fZQoaAZoCWgPQwig/rPmx58LwJSGlFKUaBVLMmgWR0CXwZrRjSXudX2UKGgGaAloD0MIA1yQLcsX/b+UhpRSlGgVSzJoFkdAl8DqRlpXZHV9lChoBmgJaA9DCGVUGcbdYPy/lIaUUpRoFUsyaBZHQJfGgJswco91fZQoaAZoCWgPQwjcZirEI1EHwJSGlFKUaBVLMmgWR0CXxeaUzKs/dX2UKGgGaAloD0MI9nmM8swLCMCUhpRSlGgVSzJoFkdAl8UmHpKSPnV9lChoBmgJaA9DCJ+PMuICkAfAlIaUUpRoFUsyaBZHQJfEdN21Ul11fZQoaAZoCWgPQwh8KxIT1FACwJSGlFKUaBVLMmgWR0CXyk1QZXMhdX2UKGgGaAloD0MIxy3m54bmAsCUhpRSlGgVSzJoFkdAl8mzs2NvO3V9lChoBmgJaA9DCKkWEcXkzQTAlIaUUpRoFUsyaBZHQJfI9AVwgkl1fZQoaAZoCWgPQwgHeqhtw+gGwJSGlFKUaBVLMmgWR0CXyEOkLx7RdX2UKGgGaAloD0MIMXxETIlk/L+UhpRSlGgVSzJoFkdAl84YuscQy3V9lChoBmgJaA9DCErP9BJjWQrAlIaUUpRoFUsyaBZHQJfNfz9S/CZ1fZQoaAZoCWgPQwhp4h3gSWsBwJSGlFKUaBVLMmgWR0CXzL3nIQvpdX2UKGgGaAloD0MIlExO7QxzC8CUhpRSlGgVSzJoFkdAl8wNNBWxQnV9lChoBmgJaA9DCPZdEfxvtRHAlIaUUpRoFUsyaBZHQJfSDt8eCCl1fZQoaAZoCWgPQwhhp1g1CNMNwJSGlFKUaBVLMmgWR0CX0XWLP2PDdX2UKGgGaAloD0MIVz1gHjIlBMCUhpRSlGgVSzJoFkdAl9C0cKgIyHV9lChoBmgJaA9DCErvG197JhHAlIaUUpRoFUsyaBZHQJfQA1TBInV1fZQoaAZoCWgPQwgfniXICGj/v5SGlFKUaBVLMmgWR0CX1di4J/oadX2UKGgGaAloD0MIjILg8e2dA8CUhpRSlGgVSzJoFkdAl9U+7cwg1XV9lChoBmgJaA9DCE33OqkvCwjAlIaUUpRoFUsyaBZHQJfUfgtOEdx1fZQoaAZoCWgPQwi+3ZIcsMsDwJSGlFKUaBVLMmgWR0CX08x5LRKIdX2UKGgGaAloD0MIbVm+LsMfCMCUhpRSlGgVSzJoFkdAl9gls1sLv3V9lChoBmgJaA9DCPVMLzGWKf+/lIaUUpRoFUsyaBZHQJfXioxYaHd1fZQoaAZoCWgPQwgrL/mf/B0FwJSGlFKUaBVLMmgWR0CX1sd1uBMBdX2UKGgGaAloD0MIz9xDwvf+CMCUhpRSlGgVSzJoFkdAl9YU2LpA2XV9lChoBmgJaA9DCB7ec2A5IgLAlIaUUpRoFUsyaBZHQJfaUHZ9NN91fZQoaAZoCWgPQwjObi2T4fgMwJSGlFKUaBVLMmgWR0CX2bUsFt9AdX2UKGgGaAloD0MIW86luKqsCcCUhpRSlGgVSzJoFkdAl9jx3JPqLXV9lChoBmgJaA9DCNgrLLgfMBXAlIaUUpRoFUsyaBZHQJfYPv8ZUDN1fZQoaAZoCWgPQwiq9BPObi0GwJSGlFKUaBVLMmgWR0CX3GwV0tAcdX2UKGgGaAloD0MIyxMIO8UKAsCUhpRSlGgVSzJoFkdAl9vQZTAFgXV9lChoBmgJaA9DCEvJchJKbxHAlIaUUpRoFUsyaBZHQJfbDXI2fkF1fZQoaAZoCWgPQwjKarqe6MoUwJSGlFKUaBVLMmgWR0CX2lsF+uvEdX2UKGgGaAloD0MIIM8u3/rQE8CUhpRSlGgVSzJoFkdAl96G3BpHqnV9lChoBmgJaA9DCBe86CtIkwrAlIaUUpRoFUsyaBZHQJfd66I3zc11fZQoaAZoCWgPQwjakH9mEL8DwJSGlFKUaBVLMmgWR0CX3SiNKh+OdX2UKGgGaAloD0MI4Sh5dY7BA8CUhpRSlGgVSzJoFkdAl9x13EAHV3V9lChoBmgJaA9DCKAzaVN1z/u/lIaUUpRoFUsyaBZHQJfgoWtU4rB1fZQoaAZoCWgPQwh/3lSkwlgDwJSGlFKUaBVLMmgWR0CX4AYHgP3BdX2UKGgGaAloD0MIKc3mcRhMDcCUhpRSlGgVSzJoFkdAl99DLB9Cu3V9lChoBmgJaA9DCOvjoe9uxRLAlIaUUpRoFUsyaBZHQJfekBxPwd91fZQoaAZoCWgPQwhfmbfqOrQBwJSGlFKUaBVLMmgWR0CX4uQUHpr2dX2UKGgGaAloD0MIVU0QdR8ACcCUhpRSlGgVSzJoFkdAl+JLz5GjK3V9lChoBmgJaA9DCK4s0VlmMQLAlIaUUpRoFUsyaBZHQJfhidVea8Z1fZQoaAZoCWgPQwgB+KdUiVIMwJSGlFKUaBVLMmgWR0CX4NimEXchdX2UKGgGaAloD0MIEATI0LEDA8CUhpRSlGgVSzJoFkdAl+UNIbwSanV9lChoBmgJaA9DCJcbDHVYgQLAlIaUUpRoFUsyaBZHQJfkcYBNmDl1fZQoaAZoCWgPQwgAVkeOdAYFwJSGlFKUaBVLMmgWR0CX464cWCVbdX2UKGgGaAloD0MIVb/S+fDsC8CUhpRSlGgVSzJoFkdAl+L7J0W/J3V9lChoBmgJaA9DCJM2VffIZgDAlIaUUpRoFUsyaBZHQJfnQC3gDRt1fZQoaAZoCWgPQwhan3JMFocVwJSGlFKUaBVLMmgWR0CX5qSeiBXkdX2UKGgGaAloD0MI4nK8AtHzBMCUhpRSlGgVSzJoFkdAl+Xhz7uUlnV9lChoBmgJaA9DCOIftvRoSgLAlIaUUpRoFUsyaBZHQJflLr+o99t1fZQoaAZoCWgPQwiCV8udmRATwJSGlFKUaBVLMmgWR0CX6V4tpVS5dX2UKGgGaAloD0MIh1J7EW0HBcCUhpRSlGgVSzJoFkdAl+jCnHeaa3V9lChoBmgJaA9DCBPU8C2smxXAlIaUUpRoFUsyaBZHQJfn/5bhWHV1fZQoaAZoCWgPQwj/d0SF6iYFwJSGlFKUaBVLMmgWR0CX500hePaMdX2UKGgGaAloD0MIXg8mxcenBcCUhpRSlGgVSzJoFkdAl+udXYDkl3V9lChoBmgJaA9DCIhnCTICCgLAlIaUUpRoFUsyaBZHQJfrAg4ffXR1fZQoaAZoCWgPQwg0gSIWMawSwJSGlFKUaBVLMmgWR0CX6j7p3X7MdX2UKGgGaAloD0MIFwyuuaP/B8CUhpRSlGgVSzJoFkdAl+mL3wkPc3V9lChoBmgJaA9DCA1TW+ogzwLAlIaUUpRoFUsyaBZHQJftsxKxs2x1fZQoaAZoCWgPQwhdTgmISdgDwJSGlFKUaBVLMmgWR0CX7ReMQ2/BdX2UKGgGaAloD0MIB7KeWn1VBMCUhpRSlGgVSzJoFkdAl+xUOiFj/nV9lChoBmgJaA9DCAjnU8cqBQTAlIaUUpRoFUsyaBZHQJfroSeyzHF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -2.
|
|
|
1 |
+
{"mean_reward": -2.74988560564816, "std_reward": 0.7760047960208503, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-21T20:36:58.654320"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f21f457d455e9ef81ddbfdbbf886327ca1afdabd7c1b6198cfa802dcff17f6cb
|
3 |
size 2387
|