hanbin commited on
Commit
5626b7f
·
verified ·
1 Parent(s): 28e3fcf

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: Meta-Llama-3.1-8B-Instruct
4
+ tags:
5
+ - llama-factory
6
+ - full
7
+ - generated_from_trainer
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: all_abla_numina_oly_orca
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # all_abla_numina_oly_orca
19
+
20
+ This model is a fine-tuned version of [/home/test/testdata/models/Meta-Llama-3.1-8B-Instruct](https://huggingface.co//home/test/testdata/models/Meta-Llama-3.1-8B-Instruct) on the codefeedback-o1, the magicoder-o1, the magicoder-oss-o1, the mathinstruct-MATH-o1, the mathinstruct-augmented-o1, the numina-cn-k12-o1, the numina-not-cn-k12-o1, the reasoning-001-o1 and the ultramedical_mc_o1 datasets.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2059
23
+ - Accuracy: 0.9286
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 1e-05
43
+ - train_batch_size: 4
44
+ - eval_batch_size: 1
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - num_devices: 32
48
+ - gradient_accumulation_steps: 2
49
+ - total_train_batch_size: 256
50
+ - total_eval_batch_size: 32
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: cosine
53
+ - lr_scheduler_warmup_ratio: 0.1
54
+ - num_epochs: 3.0
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
59
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
60
+ | 0.2107 | 0.5574 | 500 | 0.2142 | 0.9208 |
61
+ | 0.1561 | 1.1148 | 1000 | 0.2085 | 0.9239 |
62
+ | 0.1547 | 1.6722 | 1500 | 0.1994 | 0.9265 |
63
+ | 0.1092 | 2.2297 | 2000 | 0.2073 | 0.9278 |
64
+ | 0.1073 | 2.7871 | 2500 | 0.2064 | 0.9284 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.43.4
70
+ - Pytorch 2.4.0
71
+ - Datasets 2.20.0
72
+ - Tokenizers 0.19.1