Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: teknium/OpenHermes-2.5-Mistral-7B
|
3 |
+
tags:
|
4 |
+
- mistral
|
5 |
+
- instruct
|
6 |
+
- finetune
|
7 |
+
- chatml
|
8 |
+
- gpt4
|
9 |
+
- synthetic data
|
10 |
+
- distillation
|
11 |
+
- dpo
|
12 |
+
- rlhf
|
13 |
+
license: apache-2.0
|
14 |
+
language:
|
15 |
+
- en
|
16 |
+
datasets:
|
17 |
+
- mlabonne/chatml_dpo_pairs
|
18 |
+
---
|
19 |
+
|
20 |
+
<center><img src="https://i.imgur.com/qIhaFNM.png"></center>
|
21 |
+
|
22 |
+
# NeuralHermes 2.5 - Mistral 7B
|
23 |
+
|
24 |
+
NeuralHermes is based on the [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on most benchmarks (see results).
|
25 |
+
|
26 |
+
It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.
|
27 |
+
|
28 |
+
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/1h4tAJStIef_BcO-OkY97X9_OFgKnFrLl). It required an A100 GPU for about an hour.
|
29 |
+
|
30 |
+
## Quantized models
|
31 |
+
|
32 |
+
* **GGUF**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GGUF
|
33 |
+
* **AWQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-AWQ
|
34 |
+
* **GPTQ**: https://huggingface.co/TheBloke/NeuralHermes-2.5-Mistral-7B-GPTQ
|
35 |
+
* **EXL2**:
|
36 |
+
* 3.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-3.0bpw-h6-exl2
|
37 |
+
* 4.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-4.0bpw-h6-exl2
|
38 |
+
* 5.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-5.0bpw-h6-exl2
|
39 |
+
* 6.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-6.0bpw-h6-exl2
|
40 |
+
* 8.0bpw: https://huggingface.co/LoneStriker/NeuralHermes-2.5-Mistral-7B-8.0bpw-h8-exl2
|
41 |
+
|
42 |
+
## Results
|
43 |
+
|
44 |
+
**Update:** NeuralHermes-2.5 became the best Hermes-based model on the Open LLM leaderboard and one of the very best 7b models. 🎉
|
45 |
+
|
46 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/yWe6VBFxkHiuOlDVBXtGo.png)
|
47 |
+
|
48 |
+
Teknium (author of OpenHermes-2.5-Mistral-7B) benchmarked the model ([see his tweet](https://twitter.com/Teknium1/status/1729955709377503660)).
|
49 |
+
|
50 |
+
Results are improved on every benchmark: **AGIEval** (from 43.07% to 43.62%), **GPT4All** (from 73.12% to 73.25%), and **TruthfulQA**.
|
51 |
+
|
52 |
+
### AGIEval
|
53 |
+
![](https://i.imgur.com/7an3B1f.png)
|
54 |
+
|
55 |
+
### GPT4All
|
56 |
+
![](https://i.imgur.com/TLxZFi9.png)
|
57 |
+
|
58 |
+
### TruthfulQA
|
59 |
+
![](https://i.imgur.com/V380MqD.png)
|
60 |
+
|
61 |
+
You can view the Weights & Biases report [here](https://api.wandb.ai/links/halbihn/uem1q2dj).
|
62 |
+
|
63 |
+
## Usage
|
64 |
+
|
65 |
+
You can run this model using [LM Studio](https://lmstudio.ai/) or any other frontend.
|
66 |
+
|
67 |
+
You can also run this model using the following code:
|
68 |
+
|
69 |
+
```python
|
70 |
+
import transformers
|
71 |
+
from transformers import AutoTokenizer
|
72 |
+
|
73 |
+
model_id = "halbihn/NeuralHermes-2.5-Mistral-7B"
|
74 |
+
|
75 |
+
# Format prompt
|
76 |
+
message = [
|
77 |
+
{"role": "system", "content": "You are a helpful assistant chatbot."},
|
78 |
+
{"role": "user", "content": "What is a Large Language Model?"}
|
79 |
+
]
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
81 |
+
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
|
82 |
+
|
83 |
+
# Create pipeline
|
84 |
+
pipeline = transformers.pipeline(
|
85 |
+
"text-generation",
|
86 |
+
model=model_id,
|
87 |
+
tokenizer=tokenizer
|
88 |
+
)
|
89 |
+
|
90 |
+
# Generate text
|
91 |
+
sequences = pipeline(
|
92 |
+
prompt,
|
93 |
+
do_sample=True,
|
94 |
+
temperature=0.7,
|
95 |
+
top_p=0.9,
|
96 |
+
num_return_sequences=1,
|
97 |
+
max_length=200,
|
98 |
+
)
|
99 |
+
response = sequences[0]['generated_text'].split("<|im_start|>assistant")[-1].strip()
|
100 |
+
print(response)
|
101 |
+
|
102 |
+
|
103 |
+
# streaming example
|
104 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
105 |
+
import torch
|
106 |
+
|
107 |
+
model_id = "halbihn/NeuralHermes-2.5-Mistral-7B"
|
108 |
+
|
109 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
111 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
112 |
+
model.to(device)
|
113 |
+
|
114 |
+
def stream(
|
115 |
+
user_prompt: str,
|
116 |
+
max_tokens: int = 200,
|
117 |
+
) -> None:
|
118 |
+
"""Text streaming example
|
119 |
+
"""
|
120 |
+
|
121 |
+
system_prompt = 'Below is a conversation between Human and AI assistant named Mistral\n'
|
122 |
+
|
123 |
+
message = [
|
124 |
+
{"role": "system", "content": system_prompt},
|
125 |
+
{"role": "user", "content": user_prompt}
|
126 |
+
]
|
127 |
+
prompt = tokenizer.apply_chat_template(
|
128 |
+
message,
|
129 |
+
add_generation_prompt=True,
|
130 |
+
tokenize=False,
|
131 |
+
)
|
132 |
+
|
133 |
+
inputs = tokenizer([prompt], return_tensors="pt").to(device)
|
134 |
+
|
135 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
136 |
+
|
137 |
+
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=max_tokens)
|
138 |
+
|
139 |
+
stream("Tell me about the future")
|
140 |
+
|
141 |
+
>>> The future is a vast and uncertain expanse, shaped by the collective actions and innovations of humanity. It is a blend of possibilities, technological advancements, and societal changes. Some potential aspects of the future include:
|
142 |
+
>>>
|
143 |
+
>>> 1. Technological advancements: Artificial intelligence, quantum computing, and biotechnology are expected to continue evolving, leading to breakthroughs in fields like medicine, energy, and communication.
|
144 |
+
>>>
|
145 |
+
>>> 2. Space exploration: As technology progresses, space travel may become more accessible, enabling humans to establish colonies on other planets and explore the cosmos further.
|
146 |
+
>>>
|
147 |
+
>>> 3. Climate change mitigation: The future will likely see increased efforts to combat climate change through renewable energy sources, carbon capture technologies, and sustainable practices.
|
148 |
+
>>>
|
149 |
+
>>> 4. Artificial intelligence integration: AI will likely become more integrated into daily life, assisting with tasks, automating jobs, and even influencing decision-making processes in various industries.
|
150 |
+
```
|
151 |
+
|
152 |
+
## Training hyperparameters
|
153 |
+
|
154 |
+
**LoRA**:
|
155 |
+
* r=16
|
156 |
+
* lora_alpha=16
|
157 |
+
* lora_dropout=0.05
|
158 |
+
* bias="none"
|
159 |
+
* task_type="CAUSAL_LM"
|
160 |
+
* target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
|
161 |
+
|
162 |
+
**Training arguments**:
|
163 |
+
* per_device_train_batch_size=4
|
164 |
+
* gradient_accumulation_steps=4
|
165 |
+
* gradient_checkpointing=True
|
166 |
+
* learning_rate=5e-5
|
167 |
+
* lr_scheduler_type="cosine"
|
168 |
+
* max_steps=200
|
169 |
+
* optim="paged_adamw_32bit"
|
170 |
+
* warmup_steps=100
|
171 |
+
|
172 |
+
**DPOTrainer**:
|
173 |
+
* beta=0.1
|
174 |
+
* max_prompt_length=1024
|
175 |
+
* max_length=1536
|