Update README.md
Browse files
README.md
CHANGED
@@ -11,6 +11,10 @@ metrics:
|
|
11 |
model-index:
|
12 |
- name: xlm-roberta-base-azsci-topics
|
13 |
results: []
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,7 +22,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# xlm-roberta-base-azsci-topics
|
20 |
|
21 |
-
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on
|
22 |
It achieves the following results on the evaluation set:
|
23 |
- Loss: 0.5075
|
24 |
- Precision: 0.8624
|
@@ -26,18 +30,6 @@ It achieves the following results on the evaluation set:
|
|
26 |
- F1: 0.8645
|
27 |
- Accuracy: 0.8707
|
28 |
|
29 |
-
## Model description
|
30 |
-
|
31 |
-
More information needed
|
32 |
-
|
33 |
-
## Intended uses & limitations
|
34 |
-
|
35 |
-
More information needed
|
36 |
-
|
37 |
-
## Training and evaluation data
|
38 |
-
|
39 |
-
More information needed
|
40 |
-
|
41 |
## Training procedure
|
42 |
|
43 |
### Training hyperparameters
|
@@ -61,10 +53,39 @@ The following hyperparameters were used during training:
|
|
61 |
| 0.5184 | 4.0 | 1152 | 0.5059 | 0.8505 | 0.8559 | 0.8493 | 0.8559 |
|
62 |
| 0.5184 | 5.0 | 1440 | 0.5075 | 0.8624 | 0.8707 | 0.8645 | 0.8707 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
### Framework versions
|
66 |
|
67 |
- Transformers 4.38.2
|
68 |
- Pytorch 2.1.0+cu121
|
69 |
- Datasets 2.18.0
|
70 |
-
- Tokenizers 0.15.2
|
|
|
11 |
model-index:
|
12 |
- name: xlm-roberta-base-azsci-topics
|
13 |
results: []
|
14 |
+
datasets:
|
15 |
+
- hajili/azsci_topics
|
16 |
+
language:
|
17 |
+
- az
|
18 |
---
|
19 |
|
20 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
22 |
|
23 |
# xlm-roberta-base-azsci-topics
|
24 |
|
25 |
+
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on [azsci_topics](https://huggingface.co/datasets/hajili/azsci_topics) dataset.
|
26 |
It achieves the following results on the evaluation set:
|
27 |
- Loss: 0.5075
|
28 |
- Precision: 0.8624
|
|
|
30 |
- F1: 0.8645
|
31 |
- Accuracy: 0.8707
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
## Training procedure
|
34 |
|
35 |
### Training hyperparameters
|
|
|
53 |
| 0.5184 | 4.0 | 1152 | 0.5059 | 0.8505 | 0.8559 | 0.8493 | 0.8559 |
|
54 |
| 0.5184 | 5.0 | 1440 | 0.5075 | 0.8624 | 0.8707 | 0.8645 | 0.8707 |
|
55 |
|
56 |
+
### Evaluation results
|
57 |
+
|
58 |
+
| Topic | Precision | Recall | F1 | Support |
|
59 |
+
|:-------------------|------------:|---------:|---------:|----------:|
|
60 |
+
| Aqrar elmlər | 0.703704 | 0.703704 | 0.703704 | 27 |
|
61 |
+
| Astronomiya | 0 | 0 | 0 | 2 |
|
62 |
+
| Biologiya elmləri | 0.886598 | 0.819048 | 0.851485 | 105 |
|
63 |
+
| Coğrafiya | 0.75 | 0.705882 | 0.727273 | 17 |
|
64 |
+
| Filologiya elmləri | 0.91954 | 0.914286 | 0.916905 | 175 |
|
65 |
+
| Fizika | 0.710526 | 0.794118 | 0.75 | 34 |
|
66 |
+
| Fəlsəfə | 0.7 | 0.5 | 0.583333 | 14 |
|
67 |
+
| Hüquq elmləri | 1 | 1 | 1 | 29 |
|
68 |
+
| Kimya | 0.75 | 0.934426 | 0.832117 | 61 |
|
69 |
+
| Memarlıq | 1 | 0.4 | 0.571429 | 5 |
|
70 |
+
| Mexanika | 0 | 0 | 0 | 4 |
|
71 |
+
| Pedaqogika | 0.854545 | 1 | 0.921569 | 47 |
|
72 |
+
| Psixologiya | 0.823529 | 0.777778 | 0.8 | 18 |
|
73 |
+
| Riyaziyyat | 0.891892 | 0.846154 | 0.868421 | 39 |
|
74 |
+
| Siyasi elmlər | 0.785714 | 0.88 | 0.830189 | 25 |
|
75 |
+
| Sosiologiya | 0 | 0 | 0 | 4 |
|
76 |
+
| Sənətşünaslıq | 0.843137 | 0.914894 | 0.877551 | 47 |
|
77 |
+
| Tarix | 0.857143 | 0.846154 | 0.851613 | 78 |
|
78 |
+
| Texnika elmləri | 0.803922 | 0.788462 | 0.796117 | 104 |
|
79 |
+
| Tibb elmləri | 0.929936 | 0.986486 | 0.957377 | 148 |
|
80 |
+
| Yer elmləri | 0.692308 | 0.692308 | 0.692308 | 13 |
|
81 |
+
| İqtisad elmləri | 0.972603 | 0.934211 | 0.95302 | 152 |
|
82 |
+
| Əczaçılıq elmləri | 0 | 0 | 0 | 4 |
|
83 |
+
| macro avg | 0.690222 | 0.671213 | 0.673235 | 1152 |
|
84 |
+
| weighted avg | 0.862363 | 0.87066 | 0.864467 | 1152 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
- Transformers 4.38.2
|
89 |
- Pytorch 2.1.0+cu121
|
90 |
- Datasets 2.18.0
|
91 |
+
- Tokenizers 0.15.2
|