hajili commited on
Commit
a897ff6
1 Parent(s): ba6c6b8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -14
README.md CHANGED
@@ -11,6 +11,10 @@ metrics:
11
  model-index:
12
  - name: xlm-roberta-base-azsci-topics
13
  results: []
 
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,7 +22,7 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # xlm-roberta-base-azsci-topics
20
 
21
- This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
  - Loss: 0.5075
24
  - Precision: 0.8624
@@ -26,18 +30,6 @@ It achieves the following results on the evaluation set:
26
  - F1: 0.8645
27
  - Accuracy: 0.8707
28
 
29
- ## Model description
30
-
31
- More information needed
32
-
33
- ## Intended uses & limitations
34
-
35
- More information needed
36
-
37
- ## Training and evaluation data
38
-
39
- More information needed
40
-
41
  ## Training procedure
42
 
43
  ### Training hyperparameters
@@ -61,10 +53,39 @@ The following hyperparameters were used during training:
61
  | 0.5184 | 4.0 | 1152 | 0.5059 | 0.8505 | 0.8559 | 0.8493 | 0.8559 |
62
  | 0.5184 | 5.0 | 1440 | 0.5075 | 0.8624 | 0.8707 | 0.8645 | 0.8707 |
63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  ### Framework versions
66
 
67
  - Transformers 4.38.2
68
  - Pytorch 2.1.0+cu121
69
  - Datasets 2.18.0
70
- - Tokenizers 0.15.2
 
11
  model-index:
12
  - name: xlm-roberta-base-azsci-topics
13
  results: []
14
+ datasets:
15
+ - hajili/azsci_topics
16
+ language:
17
+ - az
18
  ---
19
 
20
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
22
 
23
  # xlm-roberta-base-azsci-topics
24
 
25
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on [azsci_topics](https://huggingface.co/datasets/hajili/azsci_topics) dataset.
26
  It achieves the following results on the evaluation set:
27
  - Loss: 0.5075
28
  - Precision: 0.8624
 
30
  - F1: 0.8645
31
  - Accuracy: 0.8707
32
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  ## Training procedure
34
 
35
  ### Training hyperparameters
 
53
  | 0.5184 | 4.0 | 1152 | 0.5059 | 0.8505 | 0.8559 | 0.8493 | 0.8559 |
54
  | 0.5184 | 5.0 | 1440 | 0.5075 | 0.8624 | 0.8707 | 0.8645 | 0.8707 |
55
 
56
+ ### Evaluation results
57
+
58
+ | Topic | Precision | Recall | F1 | Support |
59
+ |:-------------------|------------:|---------:|---------:|----------:|
60
+ | Aqrar elmlər | 0.703704 | 0.703704 | 0.703704 | 27 |
61
+ | Astronomiya | 0 | 0 | 0 | 2 |
62
+ | Biologiya elmləri | 0.886598 | 0.819048 | 0.851485 | 105 |
63
+ | Coğrafiya | 0.75 | 0.705882 | 0.727273 | 17 |
64
+ | Filologiya elmləri | 0.91954 | 0.914286 | 0.916905 | 175 |
65
+ | Fizika | 0.710526 | 0.794118 | 0.75 | 34 |
66
+ | Fəlsəfə | 0.7 | 0.5 | 0.583333 | 14 |
67
+ | Hüquq elmləri | 1 | 1 | 1 | 29 |
68
+ | Kimya | 0.75 | 0.934426 | 0.832117 | 61 |
69
+ | Memarlıq | 1 | 0.4 | 0.571429 | 5 |
70
+ | Mexanika | 0 | 0 | 0 | 4 |
71
+ | Pedaqogika | 0.854545 | 1 | 0.921569 | 47 |
72
+ | Psixologiya | 0.823529 | 0.777778 | 0.8 | 18 |
73
+ | Riyaziyyat | 0.891892 | 0.846154 | 0.868421 | 39 |
74
+ | Siyasi elmlər | 0.785714 | 0.88 | 0.830189 | 25 |
75
+ | Sosiologiya | 0 | 0 | 0 | 4 |
76
+ | Sənətşünaslıq | 0.843137 | 0.914894 | 0.877551 | 47 |
77
+ | Tarix | 0.857143 | 0.846154 | 0.851613 | 78 |
78
+ | Texnika elmləri | 0.803922 | 0.788462 | 0.796117 | 104 |
79
+ | Tibb elmləri | 0.929936 | 0.986486 | 0.957377 | 148 |
80
+ | Yer elmləri | 0.692308 | 0.692308 | 0.692308 | 13 |
81
+ | İqtisad elmləri | 0.972603 | 0.934211 | 0.95302 | 152 |
82
+ | Əczaçılıq elmləri | 0 | 0 | 0 | 4 |
83
+ | macro avg | 0.690222 | 0.671213 | 0.673235 | 1152 |
84
+ | weighted avg | 0.862363 | 0.87066 | 0.864467 | 1152 |
85
 
86
  ### Framework versions
87
 
88
  - Transformers 4.38.2
89
  - Pytorch 2.1.0+cu121
90
  - Datasets 2.18.0
91
+ - Tokenizers 0.15.2