initial commit
Browse files- README.md +200 -0
- config.json +137 -0
- evaluation.png +0 -0
- model.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: sklearn
|
4 |
+
tags:
|
5 |
+
- sklearn
|
6 |
+
- skops
|
7 |
+
- tabular-classification
|
8 |
+
model_format: pickle
|
9 |
+
model_file: model.pkl
|
10 |
+
widget:
|
11 |
+
structuredData:
|
12 |
+
BsmtFinSF1:
|
13 |
+
- 1280
|
14 |
+
- 1464
|
15 |
+
- 0
|
16 |
+
BsmtUnfSF:
|
17 |
+
- 402
|
18 |
+
- 536
|
19 |
+
- 795
|
20 |
+
Condition2:
|
21 |
+
- Norm
|
22 |
+
- Norm
|
23 |
+
- Norm
|
24 |
+
ExterQual:
|
25 |
+
- Ex
|
26 |
+
- Gd
|
27 |
+
- Gd
|
28 |
+
Foundation:
|
29 |
+
- PConc
|
30 |
+
- PConc
|
31 |
+
- PConc
|
32 |
+
GarageCars:
|
33 |
+
- 3
|
34 |
+
- 3
|
35 |
+
- 1
|
36 |
+
GarageType:
|
37 |
+
- BuiltIn
|
38 |
+
- Attchd
|
39 |
+
- Detchd
|
40 |
+
Heating:
|
41 |
+
- GasA
|
42 |
+
- GasA
|
43 |
+
- GasA
|
44 |
+
HeatingQC:
|
45 |
+
- Ex
|
46 |
+
- Ex
|
47 |
+
- TA
|
48 |
+
HouseStyle:
|
49 |
+
- 2Story
|
50 |
+
- 1Story
|
51 |
+
- 2.5Fin
|
52 |
+
MSSubClass:
|
53 |
+
- 60
|
54 |
+
- 20
|
55 |
+
- 75
|
56 |
+
MasVnrArea:
|
57 |
+
- 272.0
|
58 |
+
- 246.0
|
59 |
+
- 0.0
|
60 |
+
MasVnrType:
|
61 |
+
- Stone
|
62 |
+
- Stone
|
63 |
+
- .nan
|
64 |
+
MiscFeature:
|
65 |
+
- .nan
|
66 |
+
- .nan
|
67 |
+
- .nan
|
68 |
+
MoSold:
|
69 |
+
- 8
|
70 |
+
- 7
|
71 |
+
- 3
|
72 |
+
OverallQual:
|
73 |
+
- 10
|
74 |
+
- 8
|
75 |
+
- 4
|
76 |
+
Street:
|
77 |
+
- Pave
|
78 |
+
- Pave
|
79 |
+
- Pave
|
80 |
+
TotalBsmtSF:
|
81 |
+
- 1682
|
82 |
+
- 2000
|
83 |
+
- 795
|
84 |
+
YearRemodAdd:
|
85 |
+
- 2008
|
86 |
+
- 2005
|
87 |
+
- 1950
|
88 |
+
YrSold:
|
89 |
+
- 2008
|
90 |
+
- 2007
|
91 |
+
- 2006
|
92 |
+
---
|
93 |
+
|
94 |
+
# Model description
|
95 |
+
|
96 |
+
This is a random forest regression model trained on ames housing dataset from OpenML.
|
97 |
+
|
98 |
+
## Intended uses & limitations
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Training Procedure
|
103 |
+
|
104 |
+
[More Information Needed]
|
105 |
+
|
106 |
+
### Hyperparameters
|
107 |
+
|
108 |
+
<details>
|
109 |
+
<summary> Click to expand </summary>
|
110 |
+
|
111 |
+
| Hyperparameter | Value |
|
112 |
+
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
113 |
+
| memory | |
|
114 |
+
| steps | [('columntransformer', ColumnTransformer(transformers=[('simpleimputer',<br /> SimpleImputer(add_indicator=True),<br /> <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),<br /> ('ordinalencoder',<br /> OrdinalEncoder(encoded_missing_value=-2,<br /> handle_unknown='use_encoded_value',<br /> unknown_value=-1),<br /> <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])), ('randomforestregressor', RandomForestRegressor(random_state=42))] |
|
115 |
+
| verbose | False |
|
116 |
+
| columntransformer | ColumnTransformer(transformers=[('simpleimputer',<br /> SimpleImputer(add_indicator=True),<br /> <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),<br /> ('ordinalencoder',<br /> OrdinalEncoder(encoded_missing_value=-2,<br /> handle_unknown='use_encoded_value',<br /> unknown_value=-1),<br /> <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)]) |
|
117 |
+
| randomforestregressor | RandomForestRegressor(random_state=42) |
|
118 |
+
| columntransformer__n_jobs | |
|
119 |
+
| columntransformer__remainder | drop |
|
120 |
+
| columntransformer__sparse_threshold | 0.3 |
|
121 |
+
| columntransformer__transformer_weights | |
|
122 |
+
| columntransformer__transformers | [('simpleimputer', SimpleImputer(add_indicator=True), <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>), ('ordinalencoder', OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',<br /> unknown_value=-1), <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)] |
|
123 |
+
| columntransformer__verbose | False |
|
124 |
+
| columntransformer__verbose_feature_names_out | True |
|
125 |
+
| columntransformer__simpleimputer | SimpleImputer(add_indicator=True) |
|
126 |
+
| columntransformer__ordinalencoder | OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',<br /> unknown_value=-1) |
|
127 |
+
| columntransformer__simpleimputer__add_indicator | True |
|
128 |
+
| columntransformer__simpleimputer__copy | True |
|
129 |
+
| columntransformer__simpleimputer__fill_value | |
|
130 |
+
| columntransformer__simpleimputer__keep_empty_features | False |
|
131 |
+
| columntransformer__simpleimputer__missing_values | nan |
|
132 |
+
| columntransformer__simpleimputer__strategy | mean |
|
133 |
+
| columntransformer__simpleimputer__verbose | deprecated |
|
134 |
+
| columntransformer__ordinalencoder__categories | auto |
|
135 |
+
| columntransformer__ordinalencoder__dtype | <class 'numpy.float64'> |
|
136 |
+
| columntransformer__ordinalencoder__encoded_missing_value | -2 |
|
137 |
+
| columntransformer__ordinalencoder__handle_unknown | use_encoded_value |
|
138 |
+
| columntransformer__ordinalencoder__unknown_value | -1 |
|
139 |
+
| randomforestregressor__bootstrap | True |
|
140 |
+
| randomforestregressor__ccp_alpha | 0.0 |
|
141 |
+
| randomforestregressor__criterion | squared_error |
|
142 |
+
| randomforestregressor__max_depth | |
|
143 |
+
| randomforestregressor__max_features | 1.0 |
|
144 |
+
| randomforestregressor__max_leaf_nodes | |
|
145 |
+
| randomforestregressor__max_samples | |
|
146 |
+
| randomforestregressor__min_impurity_decrease | 0.0 |
|
147 |
+
| randomforestregressor__min_samples_leaf | 1 |
|
148 |
+
| randomforestregressor__min_samples_split | 2 |
|
149 |
+
| randomforestregressor__min_weight_fraction_leaf | 0.0 |
|
150 |
+
| randomforestregressor__n_estimators | 100 |
|
151 |
+
| randomforestregressor__n_jobs | |
|
152 |
+
| randomforestregressor__oob_score | False |
|
153 |
+
| randomforestregressor__random_state | 42 |
|
154 |
+
| randomforestregressor__verbose | 0 |
|
155 |
+
| randomforestregressor__warm_start | False |
|
156 |
+
|
157 |
+
</details>
|
158 |
+
|
159 |
+
### Model Plot
|
160 |
+
|
161 |
+
<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('simpleimputer',SimpleImputer(add_indicator=True),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),('ordinalencoder',OrdinalEncoder(encoded_missing_value=-2,handle_unknown='use_encoded_value',unknown_value=-1),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])),('randomforestregressor',RandomForestRegressor(random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('simpleimputer',SimpleImputer(add_indicator=True),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),('ordinalencoder',OrdinalEncoder(encoded_missing_value=-2,handle_unknown='use_encoded_value',unknown_value=-1),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])),('randomforestregressor',RandomForestRegressor(random_state=42))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">columntransformer: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('simpleimputer',SimpleImputer(add_indicator=True),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),('ordinalencoder',OrdinalEncoder(encoded_missing_value=-2,handle_unknown='use_encoded_value',unknown_value=-1),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">simpleimputer</label><div class="sk-toggleable__content"><pre><sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0></pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(add_indicator=True)</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">ordinalencoder</label><div class="sk-toggleable__content"><pre><sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0></pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label sk-toggleable__label-arrow">OrdinalEncoder</label><div class="sk-toggleable__content"><pre>OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',unknown_value=-1)</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestRegressor</label><div class="sk-toggleable__content"><pre>RandomForestRegressor(random_state=42)</pre></div></div></div></div></div></div></div>
|
162 |
+
|
163 |
+
## Evaluation Results
|
164 |
+
|
165 |
+
| Metric | Value |
|
166 |
+
|----------|----------|
|
167 |
+
| R2 score | 0.831021 |
|
168 |
+
| MAE | 0.111169 |
|
169 |
+
|
170 |
+
# How to Get Started with the Model
|
171 |
+
|
172 |
+
[More Information Needed]
|
173 |
+
|
174 |
+
# Model Card Authors
|
175 |
+
|
176 |
+
This model card is written by following authors:
|
177 |
+
|
178 |
+
[More Information Needed]
|
179 |
+
|
180 |
+
# Model Card Contact
|
181 |
+
|
182 |
+
You can contact the model card authors through following channels:
|
183 |
+
[More Information Needed]
|
184 |
+
|
185 |
+
# Citation
|
186 |
+
|
187 |
+
Below you can find information related to citation.
|
188 |
+
|
189 |
+
**BibTeX:**
|
190 |
+
```
|
191 |
+
[More Information Needed]
|
192 |
+
```
|
193 |
+
|
194 |
+
# Intended uses & limitations
|
195 |
+
|
196 |
+
This model is not ready to be used in production.
|
197 |
+
|
198 |
+
# Evaluation
|
199 |
+
|
200 |
+
![Evaluation](evaluation.png)
|
config.json
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"YrSold",
|
5 |
+
"HeatingQC",
|
6 |
+
"Street",
|
7 |
+
"YearRemodAdd",
|
8 |
+
"Heating",
|
9 |
+
"MasVnrType",
|
10 |
+
"BsmtUnfSF",
|
11 |
+
"Foundation",
|
12 |
+
"MasVnrArea",
|
13 |
+
"MSSubClass",
|
14 |
+
"ExterQual",
|
15 |
+
"Condition2",
|
16 |
+
"GarageCars",
|
17 |
+
"GarageType",
|
18 |
+
"OverallQual",
|
19 |
+
"TotalBsmtSF",
|
20 |
+
"BsmtFinSF1",
|
21 |
+
"HouseStyle",
|
22 |
+
"MiscFeature",
|
23 |
+
"MoSold"
|
24 |
+
],
|
25 |
+
"environment": [
|
26 |
+
"scikit-learn=1.2.2"
|
27 |
+
],
|
28 |
+
"example_input": {
|
29 |
+
"BsmtFinSF1": [
|
30 |
+
1280,
|
31 |
+
1464,
|
32 |
+
0
|
33 |
+
],
|
34 |
+
"BsmtUnfSF": [
|
35 |
+
402,
|
36 |
+
536,
|
37 |
+
795
|
38 |
+
],
|
39 |
+
"Condition2": [
|
40 |
+
"Norm",
|
41 |
+
"Norm",
|
42 |
+
"Norm"
|
43 |
+
],
|
44 |
+
"ExterQual": [
|
45 |
+
"Ex",
|
46 |
+
"Gd",
|
47 |
+
"Gd"
|
48 |
+
],
|
49 |
+
"Foundation": [
|
50 |
+
"PConc",
|
51 |
+
"PConc",
|
52 |
+
"PConc"
|
53 |
+
],
|
54 |
+
"GarageCars": [
|
55 |
+
3,
|
56 |
+
3,
|
57 |
+
1
|
58 |
+
],
|
59 |
+
"GarageType": [
|
60 |
+
"BuiltIn",
|
61 |
+
"Attchd",
|
62 |
+
"Detchd"
|
63 |
+
],
|
64 |
+
"Heating": [
|
65 |
+
"GasA",
|
66 |
+
"GasA",
|
67 |
+
"GasA"
|
68 |
+
],
|
69 |
+
"HeatingQC": [
|
70 |
+
"Ex",
|
71 |
+
"Ex",
|
72 |
+
"TA"
|
73 |
+
],
|
74 |
+
"HouseStyle": [
|
75 |
+
"2Story",
|
76 |
+
"1Story",
|
77 |
+
"2.5Fin"
|
78 |
+
],
|
79 |
+
"MSSubClass": [
|
80 |
+
60,
|
81 |
+
20,
|
82 |
+
75
|
83 |
+
],
|
84 |
+
"MasVnrArea": [
|
85 |
+
272.0,
|
86 |
+
246.0,
|
87 |
+
0.0
|
88 |
+
],
|
89 |
+
"MasVnrType": [
|
90 |
+
"Stone",
|
91 |
+
"Stone",
|
92 |
+
NaN
|
93 |
+
],
|
94 |
+
"MiscFeature": [
|
95 |
+
NaN,
|
96 |
+
NaN,
|
97 |
+
NaN
|
98 |
+
],
|
99 |
+
"MoSold": [
|
100 |
+
8,
|
101 |
+
7,
|
102 |
+
3
|
103 |
+
],
|
104 |
+
"OverallQual": [
|
105 |
+
10,
|
106 |
+
8,
|
107 |
+
4
|
108 |
+
],
|
109 |
+
"Street": [
|
110 |
+
"Pave",
|
111 |
+
"Pave",
|
112 |
+
"Pave"
|
113 |
+
],
|
114 |
+
"TotalBsmtSF": [
|
115 |
+
1682,
|
116 |
+
2000,
|
117 |
+
795
|
118 |
+
],
|
119 |
+
"YearRemodAdd": [
|
120 |
+
2008,
|
121 |
+
2005,
|
122 |
+
1950
|
123 |
+
],
|
124 |
+
"YrSold": [
|
125 |
+
2008,
|
126 |
+
2007,
|
127 |
+
2006
|
128 |
+
]
|
129 |
+
},
|
130 |
+
"model": {
|
131 |
+
"file": "model.pkl"
|
132 |
+
},
|
133 |
+
"model_format": "pickle",
|
134 |
+
"task": "tabular-classification",
|
135 |
+
"use_intelex": false
|
136 |
+
}
|
137 |
+
}
|
evaluation.png
ADDED
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c10d895521ed180d079a7f942556e333fa80dac85f3e6dfcd987d5f06b08bcc2
|
3 |
+
size 8162147
|