haizad commited on
Commit
4f27869
·
1 Parent(s): f01405b

initial commit

Browse files
Files changed (4) hide show
  1. README.md +203 -0
  2. config.json +137 -0
  3. evaluation.png +0 -0
  4. model.pkl +3 -0
README.md ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-classification
8
+ model_format: pickle
9
+ model_file: model.pkl
10
+ widget:
11
+ structuredData:
12
+ BsmtFinSF1:
13
+ - 1280
14
+ - 1464
15
+ - 0
16
+ BsmtUnfSF:
17
+ - 402
18
+ - 536
19
+ - 795
20
+ Condition2:
21
+ - Norm
22
+ - Norm
23
+ - Norm
24
+ ExterQual:
25
+ - Ex
26
+ - Gd
27
+ - Gd
28
+ Foundation:
29
+ - PConc
30
+ - PConc
31
+ - PConc
32
+ GarageCars:
33
+ - 3
34
+ - 3
35
+ - 1
36
+ GarageType:
37
+ - BuiltIn
38
+ - Attchd
39
+ - Detchd
40
+ Heating:
41
+ - GasA
42
+ - GasA
43
+ - GasA
44
+ HeatingQC:
45
+ - Ex
46
+ - Ex
47
+ - TA
48
+ HouseStyle:
49
+ - 2Story
50
+ - 1Story
51
+ - 2.5Fin
52
+ MSSubClass:
53
+ - 60
54
+ - 20
55
+ - 75
56
+ MasVnrArea:
57
+ - 272.0
58
+ - 246.0
59
+ - 0.0
60
+ MasVnrType:
61
+ - Stone
62
+ - Stone
63
+ - .nan
64
+ MiscFeature:
65
+ - .nan
66
+ - .nan
67
+ - .nan
68
+ MoSold:
69
+ - 8
70
+ - 7
71
+ - 3
72
+ OverallQual:
73
+ - 10
74
+ - 8
75
+ - 4
76
+ Street:
77
+ - Pave
78
+ - Pave
79
+ - Pave
80
+ TotalBsmtSF:
81
+ - 1682
82
+ - 2000
83
+ - 795
84
+ YearRemodAdd:
85
+ - 2008
86
+ - 2005
87
+ - 1950
88
+ YrSold:
89
+ - 2008
90
+ - 2007
91
+ - 2006
92
+ ---
93
+
94
+ # Model description
95
+
96
+ This is a gradient boosted regression model trained on ames housing dataset from OpenML.
97
+
98
+ ## Intended uses & limitations
99
+
100
+ [More Information Needed]
101
+
102
+ ## Training Procedure
103
+
104
+ [More Information Needed]
105
+
106
+ ### Hyperparameters
107
+
108
+ <details>
109
+ <summary> Click to expand </summary>
110
+
111
+ | Hyperparameter | Value |
112
+ |----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
113
+ | memory | |
114
+ | steps | [('columntransformer', ColumnTransformer(transformers=[('simpleimputer',<br /> SimpleImputer(add_indicator=True),<br /> <sklearn.compose._column_transformer.make_column_selector object at 0x000002A2B7A2B730>),<br /> ('ordinalencoder',<br /> OrdinalEncoder(encoded_missing_value=-2,<br /> handle_unknown='use_encoded_value',<br /> unknown_value=-1),<br /> <sklearn.compose._column_transformer.make_column_selector object at 0x000002A2EC9B9180>)])), ('histgradientboostingregressor', HistGradientBoostingRegressor(random_state=0))] |
115
+ | verbose | False |
116
+ | columntransformer | ColumnTransformer(transformers=[('simpleimputer',<br /> SimpleImputer(add_indicator=True),<br /> <sklearn.compose._column_transformer.make_column_selector object at 0x000002A2B7A2B730>),<br /> ('ordinalencoder',<br /> OrdinalEncoder(encoded_missing_value=-2,<br /> handle_unknown='use_encoded_value',<br /> unknown_value=-1),<br /> <sklearn.compose._column_transformer.make_column_selector object at 0x000002A2EC9B9180>)]) |
117
+ | histgradientboostingregressor | HistGradientBoostingRegressor(random_state=0) |
118
+ | columntransformer__n_jobs | |
119
+ | columntransformer__remainder | drop |
120
+ | columntransformer__sparse_threshold | 0.3 |
121
+ | columntransformer__transformer_weights | |
122
+ | columntransformer__transformers | [('simpleimputer', SimpleImputer(add_indicator=True), <sklearn.compose._column_transformer.make_column_selector object at 0x000002A2B7A2B730>), ('ordinalencoder', OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',<br /> unknown_value=-1), <sklearn.compose._column_transformer.make_column_selector object at 0x000002A2EC9B9180>)] |
123
+ | columntransformer__verbose | False |
124
+ | columntransformer__verbose_feature_names_out | True |
125
+ | columntransformer__simpleimputer | SimpleImputer(add_indicator=True) |
126
+ | columntransformer__ordinalencoder | OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',<br /> unknown_value=-1) |
127
+ | columntransformer__simpleimputer__add_indicator | True |
128
+ | columntransformer__simpleimputer__copy | True |
129
+ | columntransformer__simpleimputer__fill_value | |
130
+ | columntransformer__simpleimputer__keep_empty_features | False |
131
+ | columntransformer__simpleimputer__missing_values | nan |
132
+ | columntransformer__simpleimputer__strategy | mean |
133
+ | columntransformer__simpleimputer__verbose | deprecated |
134
+ | columntransformer__ordinalencoder__categories | auto |
135
+ | columntransformer__ordinalencoder__dtype | <class 'numpy.float64'> |
136
+ | columntransformer__ordinalencoder__encoded_missing_value | -2 |
137
+ | columntransformer__ordinalencoder__handle_unknown | use_encoded_value |
138
+ | columntransformer__ordinalencoder__unknown_value | -1 |
139
+ | histgradientboostingregressor__categorical_features | |
140
+ | histgradientboostingregressor__early_stopping | auto |
141
+ | histgradientboostingregressor__interaction_cst | |
142
+ | histgradientboostingregressor__l2_regularization | 0.0 |
143
+ | histgradientboostingregressor__learning_rate | 0.1 |
144
+ | histgradientboostingregressor__loss | squared_error |
145
+ | histgradientboostingregressor__max_bins | 255 |
146
+ | histgradientboostingregressor__max_depth | |
147
+ | histgradientboostingregressor__max_iter | 100 |
148
+ | histgradientboostingregressor__max_leaf_nodes | 31 |
149
+ | histgradientboostingregressor__min_samples_leaf | 20 |
150
+ | histgradientboostingregressor__monotonic_cst | |
151
+ | histgradientboostingregressor__n_iter_no_change | 10 |
152
+ | histgradientboostingregressor__quantile | |
153
+ | histgradientboostingregressor__random_state | 0 |
154
+ | histgradientboostingregressor__scoring | loss |
155
+ | histgradientboostingregressor__tol | 1e-07 |
156
+ | histgradientboostingregressor__validation_fraction | 0.1 |
157
+ | histgradientboostingregressor__verbose | 0 |
158
+ | histgradientboostingregressor__warm_start | False |
159
+
160
+ </details>
161
+
162
+ ### Model Plot
163
+
164
+ <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;simpleimputer&#x27;,SimpleImputer(add_indicator=True),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000002A2B7A2B730&gt;),(&#x27;ordinalencoder&#x27;,OrdinalEncoder(encoded_missing_value=-2,handle_unknown=&#x27;use_encoded_value&#x27;,unknown_value=-1),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000002A2EC9B9180&gt;)])),(&#x27;histgradientboostingregressor&#x27;,HistGradientBoostingRegressor(random_state=0))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;simpleimputer&#x27;,SimpleImputer(add_indicator=True),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000002A2B7A2B730&gt;),(&#x27;ordinalencoder&#x27;,OrdinalEncoder(encoded_missing_value=-2,handle_unknown=&#x27;use_encoded_value&#x27;,unknown_value=-1),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000002A2EC9B9180&gt;)])),(&#x27;histgradientboostingregressor&#x27;,HistGradientBoostingRegressor(random_state=0))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">columntransformer: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;simpleimputer&#x27;,SimpleImputer(add_indicator=True),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000002A2B7A2B730&gt;),(&#x27;ordinalencoder&#x27;,OrdinalEncoder(encoded_missing_value=-2,handle_unknown=&#x27;use_encoded_value&#x27;,unknown_value=-1),&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000002A2EC9B9180&gt;)])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">simpleimputer</label><div class="sk-toggleable__content"><pre>&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000002A2B7A2B730&gt;</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(add_indicator=True)</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">ordinalencoder</label><div class="sk-toggleable__content"><pre>&lt;sklearn.compose._column_transformer.make_column_selector object at 0x000002A2EC9B9180&gt;</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label sk-toggleable__label-arrow">OrdinalEncoder</label><div class="sk-toggleable__content"><pre>OrdinalEncoder(encoded_missing_value=-2, handle_unknown=&#x27;use_encoded_value&#x27;,unknown_value=-1)</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingRegressor</label><div class="sk-toggleable__content"><pre>HistGradientBoostingRegressor(random_state=0)</pre></div></div></div></div></div></div></div>
165
+
166
+ ## Evaluation Results
167
+
168
+ | Metric | Value |
169
+ |----------|----------|
170
+ | R2 score | 0.838471 |
171
+ | MAE | 0.111495 |
172
+
173
+ # How to Get Started with the Model
174
+
175
+ [More Information Needed]
176
+
177
+ # Model Card Authors
178
+
179
+ This model card is written by following authors:
180
+
181
+ [More Information Needed]
182
+
183
+ # Model Card Contact
184
+
185
+ You can contact the model card authors through following channels:
186
+ [More Information Needed]
187
+
188
+ # Citation
189
+
190
+ Below you can find information related to citation.
191
+
192
+ **BibTeX:**
193
+ ```
194
+ [More Information Needed]
195
+ ```
196
+
197
+ # Intended uses & limitations
198
+
199
+ This model is not ready to be used in production.
200
+
201
+ # Evaluation
202
+
203
+ ![Evaluation](evaluation.png)
config.json ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "YrSold",
5
+ "HeatingQC",
6
+ "Street",
7
+ "YearRemodAdd",
8
+ "Heating",
9
+ "MasVnrType",
10
+ "BsmtUnfSF",
11
+ "Foundation",
12
+ "MasVnrArea",
13
+ "MSSubClass",
14
+ "ExterQual",
15
+ "Condition2",
16
+ "GarageCars",
17
+ "GarageType",
18
+ "OverallQual",
19
+ "TotalBsmtSF",
20
+ "BsmtFinSF1",
21
+ "HouseStyle",
22
+ "MiscFeature",
23
+ "MoSold"
24
+ ],
25
+ "environment": [
26
+ "scikit-learn=1.2.2"
27
+ ],
28
+ "example_input": {
29
+ "BsmtFinSF1": [
30
+ 1280,
31
+ 1464,
32
+ 0
33
+ ],
34
+ "BsmtUnfSF": [
35
+ 402,
36
+ 536,
37
+ 795
38
+ ],
39
+ "Condition2": [
40
+ "Norm",
41
+ "Norm",
42
+ "Norm"
43
+ ],
44
+ "ExterQual": [
45
+ "Ex",
46
+ "Gd",
47
+ "Gd"
48
+ ],
49
+ "Foundation": [
50
+ "PConc",
51
+ "PConc",
52
+ "PConc"
53
+ ],
54
+ "GarageCars": [
55
+ 3,
56
+ 3,
57
+ 1
58
+ ],
59
+ "GarageType": [
60
+ "BuiltIn",
61
+ "Attchd",
62
+ "Detchd"
63
+ ],
64
+ "Heating": [
65
+ "GasA",
66
+ "GasA",
67
+ "GasA"
68
+ ],
69
+ "HeatingQC": [
70
+ "Ex",
71
+ "Ex",
72
+ "TA"
73
+ ],
74
+ "HouseStyle": [
75
+ "2Story",
76
+ "1Story",
77
+ "2.5Fin"
78
+ ],
79
+ "MSSubClass": [
80
+ 60,
81
+ 20,
82
+ 75
83
+ ],
84
+ "MasVnrArea": [
85
+ 272.0,
86
+ 246.0,
87
+ 0.0
88
+ ],
89
+ "MasVnrType": [
90
+ "Stone",
91
+ "Stone",
92
+ NaN
93
+ ],
94
+ "MiscFeature": [
95
+ NaN,
96
+ NaN,
97
+ NaN
98
+ ],
99
+ "MoSold": [
100
+ 8,
101
+ 7,
102
+ 3
103
+ ],
104
+ "OverallQual": [
105
+ 10,
106
+ 8,
107
+ 4
108
+ ],
109
+ "Street": [
110
+ "Pave",
111
+ "Pave",
112
+ "Pave"
113
+ ],
114
+ "TotalBsmtSF": [
115
+ 1682,
116
+ 2000,
117
+ 795
118
+ ],
119
+ "YearRemodAdd": [
120
+ 2008,
121
+ 2005,
122
+ 1950
123
+ ],
124
+ "YrSold": [
125
+ 2008,
126
+ 2007,
127
+ 2006
128
+ ]
129
+ },
130
+ "model": {
131
+ "file": "model.pkl"
132
+ },
133
+ "model_format": "pickle",
134
+ "task": "tabular-classification",
135
+ "use_intelex": false
136
+ }
137
+ }
evaluation.png ADDED
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96f6b665f15c61147b0c5edcf6f97d29db42963524c5333baea2dc38ae208912
3
+ size 346554