haguy77 commited on
Commit
bb5c564
verified
1 Parent(s): a284413

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -155
README.md CHANGED
@@ -4,41 +4,26 @@ language:
4
  - he
5
  ---
6
 
7
- # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
-
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
 
17
- <!-- Provide a longer summary of what this model is. -->
18
 
19
- This is the model card of a 馃 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
  - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
 
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
 
37
  ## Uses
38
 
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
 
41
- ### Direct Use
 
 
42
 
43
  ```python
44
  from sentence_transformers import CrossEncoder
@@ -64,7 +49,7 @@ doc2 = """
64
  注诐 注诇讬讬讛 讞讚讛 讘转拽专讬讜转 讟专讜专 诪爪讚 讗专讙讜谞讬诐 讗住诇讗诪讬讬诐 拽讬爪讜谞讬讬诐 讘住讬谞讬.
65
  """
66
 
67
- model = CrossEncoder('haguy77/sdictabert-heq')
68
 
69
  scores = model.predict([[query, doc1], [query, doc2]]) # Note: query should ALWAYS be the first of each pair
70
  # array([0.02000629, 0.00031683], dtype=float32)
@@ -73,143 +58,37 @@ results = model.rank(query, [doc2, doc1])
73
  # [{'corpus_id': 1, 'score': 0.020006292}, {'corpus_id': 0, 'score': 0.00031683326}]
74
  ```
75
 
76
- ### Downstream Use [optional]
77
-
78
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
79
-
80
- [More Information Needed]
81
-
82
- ### Out-of-Scope Use
83
-
84
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
85
-
86
- [More Information Needed]
87
-
88
- ## Bias, Risks, and Limitations
89
-
90
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
91
-
92
- [More Information Needed]
93
-
94
- ### Recommendations
95
-
96
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
97
-
98
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
99
-
100
- ## How to Get Started with the Model
101
-
102
- Use the code below to get started with the model.
103
-
104
- [More Information Needed]
105
-
106
- ## Training Details
107
-
108
  ### Training Data
109
 
110
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
111
-
112
- [More Information Needed]
113
-
114
- ### Training Procedure
115
-
116
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
117
-
118
- #### Preprocessing [optional]
119
-
120
- [More Information Needed]
121
-
122
-
123
- #### Training Hyperparameters
124
-
125
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
126
-
127
- #### Speeds, Sizes, Times [optional]
128
-
129
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
130
-
131
- [More Information Needed]
132
 
133
- ## Evaluation
134
-
135
- <!-- This section describes the evaluation protocols and provides the results. -->
136
-
137
- ### Testing Data, Factors & Metrics
138
-
139
- #### Testing Data
140
-
141
- <!-- This should link to a Dataset Card if possible. -->
142
-
143
- [More Information Needed]
144
-
145
- #### Factors
146
-
147
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
148
-
149
- [More Information Needed]
150
-
151
- #### Metrics
152
-
153
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
154
-
155
- [More Information Needed]
156
-
157
- ### Results
158
-
159
- [More Information Needed]
160
-
161
- #### Summary
162
-
163
-
164
-
165
- ## Model Examination [optional]
166
-
167
- <!-- Relevant interpretability work for the model goes here -->
168
-
169
- [More Information Needed]
170
-
171
- ## Environmental Impact
172
-
173
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
174
-
175
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
176
-
177
- - **Hardware Type:** [More Information Needed]
178
- - **Hours used:** [More Information Needed]
179
- - **Cloud Provider:** [More Information Needed]
180
- - **Compute Region:** [More Information Needed]
181
- - **Carbon Emitted:** [More Information Needed]
182
-
183
- ## Technical Specifications [optional]
184
-
185
- ### Model Architecture and Objective
186
-
187
- [More Information Needed]
188
-
189
- ### Compute Infrastructure
190
-
191
- [More Information Needed]
192
-
193
- #### Hardware
194
-
195
- [More Information Needed]
196
-
197
- #### Software
198
-
199
- [More Information Needed]
200
-
201
- ## Citation [optional]
202
-
203
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
204
 
205
  **BibTeX:**
206
 
207
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
 
209
  **APA:**
 
 
210
 
211
- [More Information Needed]
212
-
213
- ## Model Card Contact
214
-
215
- [More Information Needed]
 
4
  - he
5
  ---
6
 
 
 
 
 
 
7
 
8
  ## Model Details
9
 
10
  ### Model Description
11
 
12
+ This is the model card of a 馃 transformers model that has been pushed on the Hub.
13
 
14
+ - **Model type:** CrossEncoder
15
+ - **Language(s) (NLP):** Hebrew
 
 
 
 
 
16
  - **License:** [More Information Needed]
17
+ - **Finetuned from model [optional]:** [DictaBERT](https://huggingface.co/dicta-il/dictabert)
 
 
18
 
 
 
 
 
 
19
 
20
  ## Uses
21
 
22
+ Model was trained for ranking task as a part of a Hebrew semantic search engine.
23
 
24
+ ## How to Get Started with the Model
25
+
26
+ Use the code below to get started with the model.
27
 
28
  ```python
29
  from sentence_transformers import CrossEncoder
 
49
  注诐 注诇讬讬讛 讞讚讛 讘转拽专讬讜转 讟专讜专 诪爪讚 讗专讙讜谞讬诐 讗住诇讗诪讬讬诐 拽讬爪讜谞讬讬诐 讘住讬谞讬.
50
  """
51
 
52
+ model = CrossEncoder("haguy77/dictabert-ce")
53
 
54
  scores = model.predict([[query, doc1], [query, doc2]]) # Note: query should ALWAYS be the first of each pair
55
  # array([0.02000629, 0.00031683], dtype=float32)
 
58
  # [{'corpus_id': 1, 'score': 0.020006292}, {'corpus_id': 0, 'score': 0.00031683326}]
59
  ```
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  ### Training Data
62
 
63
+ [Hebrew Question Answering Dataset (HeQ)](https://github.com/NNLP-IL/Hebrew-Question-Answering-Dataset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  **BibTeX:**
68
 
69
+ ```bibtex
70
+ @misc{shmidman2023dictabert,
71
+ title={DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew},
72
+ author={Shaltiel Shmidman and Avi Shmidman and Moshe Koppel},
73
+ year={2023},
74
+ eprint={2308.16687},
75
+ archivePrefix={arXiv},
76
+ primaryClass={cs.CL}
77
+ }
78
+ ```
79
+ ```bibtex
80
+ @inproceedings{cohen2023heq,
81
+ title={Heq: a large and diverse hebrew reading comprehension benchmark},
82
+ author={Cohen, Amir and Merhav-Fine, Hilla and Goldberg, Yoav and Tsarfaty, Reut},
83
+ booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
84
+ pages={13693--13705},
85
+ year={2023}
86
+ }
87
+ ```
88
 
89
  **APA:**
90
+ ```apa
91
+ Shmidman, S., Shmidman, A., & Koppel, M. (2023). DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew. arXiv preprint arXiv:2308.16687.
92
 
93
+ Cohen, A., Merhav-Fine, H., Goldberg, Y., & Tsarfaty, R. (2023, December). Heq: a large and diverse hebrew reading comprehension benchmark. In Findings of the Association for Computational Linguistics: EMNLP 2023 (pp. 13693-13705).
94
+ ```