Update README.md
Browse files
README.md
CHANGED
@@ -4,41 +4,26 @@ language:
|
|
4 |
- he
|
5 |
---
|
6 |
|
7 |
-
# Model Card for Model ID
|
8 |
-
|
9 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
10 |
-
|
11 |
-
|
12 |
|
13 |
## Model Details
|
14 |
|
15 |
### Model Description
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
- **Developed by:** [More Information Needed]
|
22 |
-
- **Funded by [optional]:** [More Information Needed]
|
23 |
-
- **Shared by [optional]:** [More Information Needed]
|
24 |
-
- **Model type:** [More Information Needed]
|
25 |
-
- **Language(s) (NLP):** [More Information Needed]
|
26 |
- **License:** [More Information Needed]
|
27 |
-
- **Finetuned from model [optional]:** [
|
28 |
-
|
29 |
-
### Model Sources [optional]
|
30 |
|
31 |
-
<!-- Provide the basic links for the model. -->
|
32 |
-
|
33 |
-
- **Repository:** [More Information Needed]
|
34 |
-
- **Paper [optional]:** [More Information Needed]
|
35 |
-
- **Demo [optional]:** [More Information Needed]
|
36 |
|
37 |
## Uses
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
|
|
|
|
42 |
|
43 |
```python
|
44 |
from sentence_transformers import CrossEncoder
|
@@ -64,7 +49,7 @@ doc2 = """
|
|
64 |
注诐 注诇讬讬讛 讞讚讛 讘转拽专讬讜转 讟专讜专 诪爪讚 讗专讙讜谞讬诐 讗住诇讗诪讬讬诐 拽讬爪讜谞讬讬诐 讘住讬谞讬.
|
65 |
"""
|
66 |
|
67 |
-
model = CrossEncoder(
|
68 |
|
69 |
scores = model.predict([[query, doc1], [query, doc2]]) # Note: query should ALWAYS be the first of each pair
|
70 |
# array([0.02000629, 0.00031683], dtype=float32)
|
@@ -73,143 +58,37 @@ results = model.rank(query, [doc2, doc1])
|
|
73 |
# [{'corpus_id': 1, 'score': 0.020006292}, {'corpus_id': 0, 'score': 0.00031683326}]
|
74 |
```
|
75 |
|
76 |
-
### Downstream Use [optional]
|
77 |
-
|
78 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
79 |
-
|
80 |
-
[More Information Needed]
|
81 |
-
|
82 |
-
### Out-of-Scope Use
|
83 |
-
|
84 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
85 |
-
|
86 |
-
[More Information Needed]
|
87 |
-
|
88 |
-
## Bias, Risks, and Limitations
|
89 |
-
|
90 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
91 |
-
|
92 |
-
[More Information Needed]
|
93 |
-
|
94 |
-
### Recommendations
|
95 |
-
|
96 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
97 |
-
|
98 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
99 |
-
|
100 |
-
## How to Get Started with the Model
|
101 |
-
|
102 |
-
Use the code below to get started with the model.
|
103 |
-
|
104 |
-
[More Information Needed]
|
105 |
-
|
106 |
-
## Training Details
|
107 |
-
|
108 |
### Training Data
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
[More Information Needed]
|
113 |
-
|
114 |
-
### Training Procedure
|
115 |
-
|
116 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
117 |
-
|
118 |
-
#### Preprocessing [optional]
|
119 |
-
|
120 |
-
[More Information Needed]
|
121 |
-
|
122 |
-
|
123 |
-
#### Training Hyperparameters
|
124 |
-
|
125 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
126 |
-
|
127 |
-
#### Speeds, Sizes, Times [optional]
|
128 |
-
|
129 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
130 |
-
|
131 |
-
[More Information Needed]
|
132 |
|
133 |
-
##
|
134 |
-
|
135 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
136 |
-
|
137 |
-
### Testing Data, Factors & Metrics
|
138 |
-
|
139 |
-
#### Testing Data
|
140 |
-
|
141 |
-
<!-- This should link to a Dataset Card if possible. -->
|
142 |
-
|
143 |
-
[More Information Needed]
|
144 |
-
|
145 |
-
#### Factors
|
146 |
-
|
147 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
148 |
-
|
149 |
-
[More Information Needed]
|
150 |
-
|
151 |
-
#### Metrics
|
152 |
-
|
153 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
154 |
-
|
155 |
-
[More Information Needed]
|
156 |
-
|
157 |
-
### Results
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
#### Summary
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
## Model Examination [optional]
|
166 |
-
|
167 |
-
<!-- Relevant interpretability work for the model goes here -->
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Environmental Impact
|
172 |
-
|
173 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
174 |
-
|
175 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
176 |
-
|
177 |
-
- **Hardware Type:** [More Information Needed]
|
178 |
-
- **Hours used:** [More Information Needed]
|
179 |
-
- **Cloud Provider:** [More Information Needed]
|
180 |
-
- **Compute Region:** [More Information Needed]
|
181 |
-
- **Carbon Emitted:** [More Information Needed]
|
182 |
-
|
183 |
-
## Technical Specifications [optional]
|
184 |
-
|
185 |
-
### Model Architecture and Objective
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
### Compute Infrastructure
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
#### Hardware
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
#### Software
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
## Citation [optional]
|
202 |
-
|
203 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
204 |
|
205 |
**BibTeX:**
|
206 |
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
**APA:**
|
|
|
|
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
## Model Card Contact
|
214 |
-
|
215 |
-
[More Information Needed]
|
|
|
4 |
- he
|
5 |
---
|
6 |
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
## Model Details
|
9 |
|
10 |
### Model Description
|
11 |
|
12 |
+
This is the model card of a 馃 transformers model that has been pushed on the Hub.
|
13 |
|
14 |
+
- **Model type:** CrossEncoder
|
15 |
+
- **Language(s) (NLP):** Hebrew
|
|
|
|
|
|
|
|
|
|
|
16 |
- **License:** [More Information Needed]
|
17 |
+
- **Finetuned from model [optional]:** [DictaBERT](https://huggingface.co/dicta-il/dictabert)
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## Uses
|
21 |
|
22 |
+
Model was trained for ranking task as a part of a Hebrew semantic search engine.
|
23 |
|
24 |
+
## How to Get Started with the Model
|
25 |
+
|
26 |
+
Use the code below to get started with the model.
|
27 |
|
28 |
```python
|
29 |
from sentence_transformers import CrossEncoder
|
|
|
49 |
注诐 注诇讬讬讛 讞讚讛 讘转拽专讬讜转 讟专讜专 诪爪讚 讗专讙讜谞讬诐 讗住诇讗诪讬讬诐 拽讬爪讜谞讬讬诐 讘住讬谞讬.
|
50 |
"""
|
51 |
|
52 |
+
model = CrossEncoder("haguy77/dictabert-ce")
|
53 |
|
54 |
scores = model.predict([[query, doc1], [query, doc2]]) # Note: query should ALWAYS be the first of each pair
|
55 |
# array([0.02000629, 0.00031683], dtype=float32)
|
|
|
58 |
# [{'corpus_id': 1, 'score': 0.020006292}, {'corpus_id': 0, 'score': 0.00031683326}]
|
59 |
```
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
### Training Data
|
62 |
|
63 |
+
[Hebrew Question Answering Dataset (HeQ)](https://github.com/NNLP-IL/Hebrew-Question-Answering-Dataset)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
## Citation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
**BibTeX:**
|
68 |
|
69 |
+
```bibtex
|
70 |
+
@misc{shmidman2023dictabert,
|
71 |
+
title={DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew},
|
72 |
+
author={Shaltiel Shmidman and Avi Shmidman and Moshe Koppel},
|
73 |
+
year={2023},
|
74 |
+
eprint={2308.16687},
|
75 |
+
archivePrefix={arXiv},
|
76 |
+
primaryClass={cs.CL}
|
77 |
+
}
|
78 |
+
```
|
79 |
+
```bibtex
|
80 |
+
@inproceedings{cohen2023heq,
|
81 |
+
title={Heq: a large and diverse hebrew reading comprehension benchmark},
|
82 |
+
author={Cohen, Amir and Merhav-Fine, Hilla and Goldberg, Yoav and Tsarfaty, Reut},
|
83 |
+
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
|
84 |
+
pages={13693--13705},
|
85 |
+
year={2023}
|
86 |
+
}
|
87 |
+
```
|
88 |
|
89 |
**APA:**
|
90 |
+
```apa
|
91 |
+
Shmidman, S., Shmidman, A., & Koppel, M. (2023). DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew. arXiv preprint arXiv:2308.16687.
|
92 |
|
93 |
+
Cohen, A., Merhav-Fine, H., Goldberg, Y., & Tsarfaty, R. (2023, December). Heq: a large and diverse hebrew reading comprehension benchmark. In Findings of the Association for Computational Linguistics: EMNLP 2023 (pp. 13693-13705).
|
94 |
+
```
|
|
|
|
|
|