hagifly commited on
Commit
6084dec
1 Parent(s): e0c6466

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -204
README.md CHANGED
@@ -1,204 +1,95 @@
1
- ---
2
- library_name: transformers
3
- datasets:
4
- - kinokokoro/ichikara-instruction-003
5
- language:
6
- - ja
7
- base_model:
8
- - llm-jp/llm-jp-3-13b
9
- ---
10
-
11
- # Model Card for Model ID
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
-
16
-
17
- ## Model Details
18
-
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
24
-
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
-
188
- ## Glossary [optional]
189
-
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
-
192
- [More Information Needed]
193
-
194
- ## More Information [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Authors [optional]
199
-
200
- [More Information Needed]
201
-
202
- ## Model Card Contact
203
-
204
- [More Information Needed]
 
1
+ ---
2
+ library_name: transformers
3
+ datasets:
4
+ - kinokokoro/ichikara-instruction-003
5
+ language:
6
+ - ja
7
+ base_model:
8
+ - llm-jp/llm-jp-3-13b
9
+ ---
10
+
11
+ # Usage
12
+ ```
13
+ !pip install -U bitsandbytes
14
+ !pip install -U transformers
15
+ !pip install -U accelerate
16
+ !pip install -U datasets
17
+ !pip install -U peft
18
+ !pip install ipywidgets --upgrade
19
+
20
+
21
+ from transformers import (
22
+ AutoModelForCausalLM,
23
+ AutoTokenizer,
24
+ BitsAndBytesConfig,
25
+ )
26
+ from peft import PeftModel
27
+ import torch
28
+ from tqdm import tqdm
29
+ import json
30
+
31
+
32
+ HF_TOKEN = "Hugging Face Token"
33
+ model_id = "llm-jp/llm-jp-3-13b"
34
+ adapter_id = ""
35
+
36
+ bnb_config = BitsAndBytesConfig(
37
+ load_in_4bit=True,
38
+ bnb_4bit_quant_type="nf4",
39
+ bnb_4bit_compute_dtype=torch.bfloat16,
40
+ )
41
+
42
+ model = AutoModelForCausalLM.from_pretrained(
43
+ model_id,
44
+ quantization_config=bnb_config,
45
+ device_map="auto",
46
+ token = HF_TOKEN
47
+ )
48
+
49
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)
50
+
51
+ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
52
+
53
+ datasets = []
54
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
55
+ item = ""
56
+ for line in f:
57
+ line = line.strip()
58
+ item += line
59
+ if item.endswith("}"):
60
+ datasets.append(json.loads(item))
61
+ item = ""
62
+
63
+ results = []
64
+ for data in tqdm(datasets):
65
+
66
+ input = data["input"]
67
+
68
+ prompt = f"""### 指示
69
+ {input}
70
+ ### 回答
71
+ """
72
+
73
+ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
74
+ attention_mask = torch.ones_like(tokenized_input)
75
+ with torch.no_grad():
76
+ outputs = model.generate(
77
+ tokenized_input,
78
+ attention_mask=attention_mask,
79
+ max_new_tokens=100,
80
+ do_sample=False,
81
+ repetition_penalty=1.2,
82
+ pad_token_id=tokenizer.eos_token_id
83
+ )[0]
84
+ output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
85
+
86
+ results.append({"task_id": data["task_id"], "input": input, "output": output})
87
+
88
+ import re
89
+ jsonl_id = re.sub(".*/", "", adapter_id)
90
+ with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
91
+ for result in results:
92
+ json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
93
+ f.write('\n')
94
+
95
+ ```