hadrakey's picture
Training in progress, step 1000
9c909e3 verified
from dataclasses import dataclass, field
from typing import Optional
import pandas as pd
import torch
from accelerate import Accelerator
from datasets import load_dataset, Dataset, load_metric
from peft import LoraConfig, get_peft_model
from tqdm import tqdm
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, VisionEncoderDecoderModel, TrOCRProcessor, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator, EarlyStoppingCallback
# from trl import SFTTrainer, is_xpu_available
from data import AphaPenDataset
import evaluate
from sklearn.model_selection import train_test_split
import torchvision.transforms as transforms
# from utils import compute_metrics
from src.calibrator import EncoderDecoderCalibrator
from src.loss import MarginLoss, KLRegularization
from src.similarity import CERSimilarity
import os
tqdm.pandas()
os.environ["WANDB_PROJECT"]="Alphapen"
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
The name of the OCR model we wish to fine with Seq2SeqTrainer
"""
model_name: Optional[str] = field(default="microsoft/trocr-base-handwritten", metadata={"help": "the model name"})
dataset_name: Optional[str] = field(
default="Anthropic/hh-rlhf", metadata={"help": "the dataset name"}
)
log_with: Optional[str] = field(default="none", metadata={"help": "use 'wandb' to log with wandb"})
learning_rate: Optional[float] = field(default=1.41e-5, metadata={"help": "the learning rate"})
batch_size: Optional[int] = field(default=8, metadata={"help": "the batch size"})
seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
gradient_accumulation_steps: Optional[int] = field(
default=16, metadata={"help": "the number of gradient accumulation steps"}
)
load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
use_peft: Optional[bool] = field(default=False, metadata={"help": "Wether to use PEFT or not to train adapters"})
trust_remote_code: Optional[bool] = field(default=False, metadata={"help": "Enable `trust_remote_code`"})
output_dir: Optional[str] = field(default="output", metadata={"help": "the output directory"})
peft_lora_r: Optional[int] = field(default=64, metadata={"help": "the r parameter of the LoRA adapters"})
peft_lora_alpha: Optional[int] = field(default=16, metadata={"help": "the alpha parameter of the LoRA adapters"})
logging_steps: Optional[int] = field(default=1, metadata={"help": "the number of logging steps"})
use_auth_token: Optional[bool] = field(default=True, metadata={"help": "Use HF auth token to access the model"})
num_train_epochs: Optional[int] = field(default=3, metadata={"help": "the number of training epochs"})
max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
max_length: Optional[int] = field(default=10, metadata={"help": "the maximum length"})
no_repeat_ngram_size: Optional[int] = field(default=3, metadata={"help": "the number of repeat"})
length_penalty: Optional[float] = field(default=2.0, metadata={"help": "the length of penalty"})
num_beams: Optional[int] = field(default=3, metadata={"help": "the number of beam search"})
early_stopping: Optional[bool] = field(default=True, metadata={"help": "Early stopping"})
save_steps: Optional[int] = field(
default=1000, metadata={"help": "Number of updates steps before two checkpoint saves"}
)
save_total_limit: Optional[int] = field(default=10, metadata={"help": "Limits total number of checkpoints."})
push_to_hub: Optional[bool] = field(default=False, metadata={"help": "Push the model to HF Hub"})
gradient_checkpointing: Optional[bool] = field(
default=False, metadata={"help": "Whether to use gradient checkpointing or no"}
)
gradient_checkpointing_kwargs: Optional[dict] = field(
default=None,
metadata={
"help": "key word arguments to be passed along `torch.utils.checkpoint.checkpoint` method - e.g. `use_reentrant=False`"
},
)
hub_model_id: Optional[str] = field(default=None, metadata={"help": "The name of the model on HF Hub"})
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
# # Step 1: Load the dataset
df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
df = pd.read_csv(df_path)
df.dropna(inplace=True)
train_df, test_df = train_test_split(df, test_size=0.15, random_state=0)
# we reset the indices to start from zero
train_df.reset_index(drop=True, inplace=True)
test_df.reset_index(drop=True, inplace=True)
root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
processor = TrOCRProcessor.from_pretrained(script_args.model_name)
train_dataset = AphaPenDataset(root_dir=root_dir, df=train_df, processor=processor)
eval_dataset = AphaPenDataset(root_dir=root_dir, df=test_df.iloc[:10,:], processor=processor)
# Step 2: Load the model
# if script_args.load_in_8bit and script_args.load_in_4bit:
# raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
# elif script_args.load_in_8bit or script_args.load_in_4bit:
# quantization_config = BitsAndBytesConfig(
# load_in_8bit=script_args.load_in_8bit, load_in_4bit=script_args.load_in_4bit
# )
# # Copy the model to each device
# device_map = (
# {"": f"xpu:{Accelerator().local_process_index}"}
# if is_xpu_available()
# else {"": Accelerator().local_process_index}
# )
# torch_dtype = torch.bfloat16
# else:
# device_map = None
# quantization_config = None
# torch_dtype = None
model = VisionEncoderDecoderModel.from_pretrained(
script_args.model_name,
#quantization_config=quantization_config,
device_map="cuda",
trust_remote_code=script_args.trust_remote_code,
torch_dtype=torch.bfloat16,
token=script_args.use_auth_token,
)
# set special tokens used for creating the decoder_input_ids from the labels
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
# make sure vocab size is set correctly
model.config.vocab_size = model.config.decoder.vocab_size
# set beam search parameters
model.config.eos_token_id = processor.tokenizer.sep_token_id
model.config.max_length = script_args.max_length
model.config.early_stopping = script_args.early_stopping
model.config.no_repeat_ngram_size = script_args.no_repeat_ngram_size
model.config.length_penalty = script_args.length_penalty
model.config.num_beams = script_args.num_beams
# LoRa
lora_config = LoraConfig(
r=script_args.peft_lora_r,
lora_alpha=script_args.peft_lora_alpha,
lora_dropout=0.1,
target_modules=[
'query',
'key',
'value',
'intermediate.dense',
'output.dense',
#'wte',
#'wpe',
#'c_attn',
#'c_proj',
#'q_attn',
#'c_fc'
],
)
model = get_peft_model(model, lora_config)
tokenizer = processor.tokenizer
sim = CERSimilarity(tokenizer)
loss = MarginLoss(sim, beta=0.1, num_samples=60)
reg = KLRegularization(model)
calibrator = EncoderDecoderCalibrator(model, loss, reg, 15, 15)
# # Step 3: Define the training arguments
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
evaluation_strategy="steps",
per_device_train_batch_size=script_args.batch_size,
per_device_eval_batch_size=script_args.batch_size,
fp16=True,
output_dir=script_args.output_dir,
logging_steps=script_args.logging_steps,
save_steps=script_args.save_steps,
eval_steps=100,
save_total_limit=script_args.save_total_limit,
# load_best_model_at_end = True,
report_to=script_args.log_with,
num_train_epochs=script_args.num_train_epochs,
push_to_hub=script_args.push_to_hub,
hub_model_id=script_args.hub_model_id,
gradient_checkpointing=script_args.gradient_checkpointing,
# metric_for_best_model="eval/cer"
# TODO: uncomment that on the next release
# gradient_checkpointing_kwargs=script_args.gradient_checkpointing_kwargs,
)
# Step 4: Define a metric
# subclass trainer
class CustomTrainer(Seq2SeqTrainer):
def compute_loss(self, model, inputs, return_outputs=False):
tokenizer = processor.tokenizer
sim = CERSimilarity(tokenizer)
marginloss = MarginLoss(sim, beta=0.1, num_samples=60)
labels = inputs.pop("labels")
labels[labels == -100] = processor.tokenizer.pad_token_id
outputs = model.generate(**inputs, num_beams=4, do_sample=True, num_return_sequences=1, return_dict_in_generate=True, output_scores=True, output_logits=True)
# pred_str = processor.batch_decode(outputs, skip_special_tokens=True)
print(model.config)
print(outputs)
print(labels.shape)
# pred_str = processor.batch_decode(outputs, skip_special_tokens=True)
# print(pred_str)
loss = marginloss(outputs, labels)
# logits = outputs.logits
# loss = nll_loss(logits, labels)
return (loss, outputs) if return_outputs else loss
def compute_metrics(pred):
# accuracy_metric = evaluate.load("precision")
cer_metric = evaluate.load("cer")
labels_ids = pred.label_ids
pred_ids = pred.predictions
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
cer = cer_metric.compute(predictions=pred_str, references=label_str)
# accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())
return {"cer": cer}
early_stop = EarlyStoppingCallback(10, .001)
# # Step 5: Define the Trainer
trainer = CustomTrainer(
model=model,
tokenizer=processor.feature_extractor,
args=training_args,
# compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=default_data_collator,
# callbacks = [early_stop]
)
trainer.train()
# # Step 6: Save the model
# trainer.save_model(script_args.output_dir)