hadrakey commited on
Commit
2a447af
·
verified ·
1 Parent(s): eec083e

Training in progress, step 1000

Browse files
adapter_config.json CHANGED
@@ -23,11 +23,11 @@
23
  "rank_pattern": {},
24
  "revision": null,
25
  "target_modules": [
26
- "query",
 
27
  "value",
28
  "key",
29
- "output.dense",
30
- "intermediate.dense"
31
  ],
32
  "task_type": null,
33
  "use_dora": false,
 
23
  "rank_pattern": {},
24
  "revision": null,
25
  "target_modules": [
26
+ "output.dense",
27
+ "intermediate.dense",
28
  "value",
29
  "key",
30
+ "query"
 
31
  ],
32
  "task_type": null,
33
  "use_dora": false,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:680245107cdadb5055f67d67bf7d89865479e0428a3b75bd5bca72ec83d94725
3
  size 10637752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ace69a40479cb7818005942179ac01520eee1b042f570b77c58aa179b9f20d6d
3
  size 10637752
config.json CHANGED
@@ -173,6 +173,5 @@
173
  "processor_class": "TrOCRProcessor",
174
  "tie_word_embeddings": false,
175
  "torch_dtype": "float32",
176
- "transformers_version": "4.42.3",
177
- "vocab_size": 50265
178
  }
 
173
  "processor_class": "TrOCRProcessor",
174
  "tie_word_embeddings": false,
175
  "torch_dtype": "float32",
176
+ "transformers_version": "4.44.2"
 
177
  }
finetune_phi3_vision.py CHANGED
@@ -8,10 +8,59 @@ from transformers import AutoProcessor, BitsAndBytesConfig
8
  from transformers import AutoModelForCausalLM, AutoModelForVision2Seq
9
  from datetime import datetime
10
  import evaluate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  # Define train and test size.
12
  TRAIN_SAMPLES = 1000
13
  TEST_SAMPLES = 200
14
  TEST_SIZE = 0.166 #
 
15
 
16
  # Define the directory containing the images.
17
  df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
@@ -19,9 +68,11 @@ df = pd.read_csv(df_path)
19
  df.dropna(inplace=True)
20
  df["id"] = range(df.shape[0])
21
  df["query"] = "What is shown in this image?"
 
22
 
23
  root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
24
- image_paths = [root_dir + img for img in df.filename]
 
25
 
26
  # New batch
27
  df_path_2 = "/mnt/data1/Datasets/AlphaPen/" + "training_b2.csv"
@@ -29,38 +80,44 @@ df_2 = pd.read_csv(df_path_2)
29
  df_2.dropna(inplace=True)
30
  df_2["id"] = range(df_2.shape[0])
31
  df_2["query"] = "What is shown in this image?"
 
32
 
33
  root_dir_2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/clean_data/cropped_data/cropped_"
34
- image_paths_2 = [root_dir_2 + img for img in df_2.filename]
35
- # Create a list of other columns such as id, query, and answer.
36
- ids = range(df.shape[0] + df_2.shape[0])
37
- queries = df['query'].tolist() + df_2['query'].tolist()
38
- answers = df['text'].tolist() + df_2['text'].tolist()
 
 
39
 
40
  # Create the dataset dictionary.
41
- dataset_dict = {
42
- 'id': ids,
43
- 'image': image_paths + image_paths_2,
44
- 'query': queries,
45
- 'answers': answers
 
 
46
  }
47
 
48
  # Create the dataset.
49
- dataset = Dataset.from_dict(dataset_dict)
 
50
 
51
  # Cast the 'image' column to Image type.
52
- dataset = dataset.cast_column("image", Image())
 
53
 
54
  # Split the dataset into train and test.
55
- split_dataset = dataset.train_test_split(test_size=TEST_SIZE, shuffle=False)
56
 
57
- train_dataset = split_dataset["train"]
58
- eval_dataset = split_dataset["test"]
59
- print(len(train_dataset))
60
  # Push the dataset on Hugging Face Hub.
61
  # split_dataset.push_to_hub("NSTiwari/DocumentIDEFICS_QA")
62
 
63
- os.environ["WANDB_PROJECT"]="Alphapen"
64
 
65
  # Define model ID
66
  # model_id = "microsoft/Phi-3-vision-128k-instruct"
@@ -121,112 +178,86 @@ else:
121
 
122
 
123
 
124
- import random
125
-
126
- class MyDataCollator:
127
- def __init__(self, processor):
128
- self.processor = processor
129
- self.image_token_id = processor.tokenizer.additional_special_tokens_ids[
130
- processor.tokenizer.additional_special_tokens.index("<image>")
131
- ]
132
-
133
- def __call__(self, examples):
134
- texts = []
135
- images = []
136
- for example in examples:
137
- image = example["image"]
138
- # print(example["query"])
139
- question = example["query"]
140
- answer = example["answers"]
141
- messages = [
142
- {
143
- "role": "user",
144
- "content": [
145
- {"type": "text", "text": "OCR the text in the image."},
146
- {"type": "image"},
147
- {"type": "text", "text": question}
148
- ]
149
- },
150
- {
151
- "role": "assistant",
152
- "content": [
153
- {"type": "text", "text": answer}
154
- ]
155
- }
156
- ]
157
- text = processor.apply_chat_template(messages, add_generation_prompt=False)
158
- texts.append(text.strip())
159
- images.append([image])
160
-
161
- batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
162
-
163
- labels = batch["input_ids"].clone()
164
- # labels[labels == processor.tokenizer.pad_token_id] = self.image_token_id
165
- batch["labels"] = labels
166
 
167
- return batch
168
 
169
  data_collator = MyDataCollator(processor)
170
 
171
- from transformers import TrainingArguments, Trainer, Seq2SeqTrainer, Seq2SeqTrainingArguments
172
 
173
- training_args = Seq2SeqTrainingArguments(
174
- predict_with_generate=True,
175
- output_dir = "idefics2",
176
- learning_rate = 2e-4,
177
- fp16 = True,
178
- per_device_train_batch_size = 8,
179
- per_device_eval_batch_size = 8,
180
- gradient_accumulation_steps = 2,
181
- dataloader_pin_memory = False,
182
- save_total_limit = 3,
183
- eval_strategy ="steps",
184
- save_strategy = "steps",
185
- eval_steps = 200,
186
- save_steps = 10000,
187
- max_steps = 50000,
188
- logging_steps = 10,
189
- remove_unused_columns = False,
190
- push_to_hub=True,
191
- label_names = ["labels"],
192
- load_best_model_at_end = False,
193
- report_to = "wandb",
194
- optim = "paged_adamw_8bit",
195
- run_name=f"idefics2-vision-LoRA-{datetime.now().strftime('%Y-%m-%d-%H-%M-%s')}",
196
- hub_model_id="hadrakey/alphapen_idefics2_finetune_v1",
197
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
199
- def compute_metrics(pred):
200
- # accuracy_metric = evaluate.load("precision")
201
- cer_metric = evaluate.load("cer")
202
-
203
- labels_ids = pred.label_ids
204
- pred_ids = pred.predictions
205
- # print(pred_ids)
206
- # print(labels_ids)
207
- # max_length = max(pred_ids.shape[1], labels_ids.shape[1])
208
- # generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)
209
- pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
210
- pred_str = [word.lower() for word in pred_str]
211
- # print(pred_str)
212
- # pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
213
- labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
214
- label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
215
- label_str = [word.lower() for word in label_str]
216
- # print(label_str)
217
- cer = cer_metric.compute(predictions=pred_str, references=label_str)
218
- # accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())
219
-
220
- return {"cer": cer}
221
-
222
-
223
- trainer = Seq2SeqTrainer(
224
- model = model,
225
- args = training_args,
226
- data_collator = data_collator,
227
- train_dataset = train_dataset,
228
- eval_dataset = eval_dataset,
229
- compute_metrics=compute_metrics,
230
- )
231
 
232
- trainer.train()
 
8
  from transformers import AutoModelForCausalLM, AutoModelForVision2Seq
9
  from datetime import datetime
10
  import evaluate
11
+ from transformers import TrainingArguments, Trainer, Seq2SeqTrainer, Seq2SeqTrainingArguments
12
+ from sklearn.model_selection import train_test_split
13
+
14
+ import random
15
+
16
+ class MyDataCollator:
17
+ def __init__(self, processor):
18
+ self.processor = processor
19
+ self.image_token_id = processor.tokenizer.additional_special_tokens_ids[
20
+ processor.tokenizer.additional_special_tokens.index("<image>")
21
+ ]
22
+
23
+ def __call__(self, examples):
24
+ texts = []
25
+ images = []
26
+ for example in examples:
27
+ image = example["image"]
28
+ # print(example["query"])
29
+ question = example["query"]
30
+ answer = example["answers"]
31
+ messages = [
32
+ {
33
+ "role": "user",
34
+ "content": [
35
+ {"type": "text", "text": "OCR the text in the image."},
36
+ {"type": "image"},
37
+ {"type": "text", "text": question}
38
+ ]
39
+ },
40
+ {
41
+ "role": "assistant",
42
+ "content": [
43
+ {"type": "text", "text": answer}
44
+ ]
45
+ }
46
+ ]
47
+ text = processor.apply_chat_template(messages, add_generation_prompt=False)
48
+ texts.append(text.strip())
49
+ images.append([image])
50
+
51
+ batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
52
+
53
+ labels = batch["input_ids"].clone()
54
+ # labels[labels == processor.tokenizer.pad_token_id] = self.image_token_id
55
+ batch["labels"] = labels
56
+
57
+ return batch
58
+
59
  # Define train and test size.
60
  TRAIN_SAMPLES = 1000
61
  TEST_SAMPLES = 200
62
  TEST_SIZE = 0.166 #
63
+ samp_list = [1, 15000, 30000, 45000, 60000, 70000]
64
 
65
  # Define the directory containing the images.
66
  df_path = "/mnt/data1/Datasets/AlphaPen/" + "training_data.csv"
 
68
  df.dropna(inplace=True)
69
  df["id"] = range(df.shape[0])
70
  df["query"] = "What is shown in this image?"
71
+ train_df, test_df = train_test_split(df, test_size=0.02, random_state=0)
72
 
73
  root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
74
+ image_paths_train = [root_dir + img for img in train_df.filename]
75
+ image_paths_test = [root_dir + img for img in test_df.filename]
76
 
77
  # New batch
78
  df_path_2 = "/mnt/data1/Datasets/AlphaPen/" + "training_b2.csv"
 
80
  df_2.dropna(inplace=True)
81
  df_2["id"] = range(df_2.shape[0])
82
  df_2["query"] = "What is shown in this image?"
83
+ train_df_b2, test_df_b2 = train_test_split(df_2, test_size=0.01, random_state=0)
84
 
85
  root_dir_2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/clean_data/cropped_data/cropped_"
86
+ image_paths_2_train = [root_dir_2 + img for img in train_df_b2.filename]
87
+ image_paths_2_test = [root_dir_2 + img for img in test_df_b2.filename]
88
+
89
+
90
+ ids_test = range(test_df.shape[0] + test_df_b2.shape[0])
91
+ queries_test = test_df['query'].tolist() + test_df_b2['query'].tolist()
92
+ answers_test = test_df['text'].tolist() + test_df_b2['text'].tolist()
93
 
94
  # Create the dataset dictionary.
95
+
96
+
97
+ eval_dataset_dict = {
98
+ 'id': ids_test,
99
+ 'image': image_paths_test + image_paths_2_test,
100
+ 'query': queries_test,
101
+ 'answers': answers_test
102
  }
103
 
104
  # Create the dataset.
105
+
106
+ eval_dataset = Dataset.from_dict(eval_dataset_dict)
107
 
108
  # Cast the 'image' column to Image type.
109
+
110
+ eval_dataset = eval_dataset.cast_column("image", Image())
111
 
112
  # Split the dataset into train and test.
113
+ # split_dataset = dataset.train_test_split(test_size=TEST_SIZE, shuffle=False)
114
 
115
+ # train_dataset = split_dataset["train"]
116
+ # eval_dataset = split_dataset["test"]
117
+ print(len(eval_dataset))
118
  # Push the dataset on Hugging Face Hub.
119
  # split_dataset.push_to_hub("NSTiwari/DocumentIDEFICS_QA")
120
 
 
121
 
122
  # Define model ID
123
  # model_id = "microsoft/Phi-3-vision-128k-instruct"
 
178
 
179
 
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
 
 
182
 
183
  data_collator = MyDataCollator(processor)
184
 
 
185
 
186
+ for samp in samp_list:
187
+ os.environ["WANDB_PROJECT"]="Alphapen"
188
+ # Create a list of other columns such as id, query, and answer.
189
+ ids_train = range(train_df.shape[0] + train_df_b2.shape[0])
190
+ queries_train = train_df['query'].tolist() + train_df_b2['query'].tolist()
191
+ answers_train = train_df['text'].tolist() + train_df_b2['text'].tolist()
192
+
193
+ train_dataset_dict = {
194
+ 'id': ids_train,
195
+ 'image': image_paths_train + image_paths_2_train,
196
+ 'query': queries_train,
197
+ 'answers': answers_train
198
+ }
199
+
200
+ train_dataset = Dataset.from_dict(train_dataset_dict)
201
+ train_dataset = train_dataset.cast_column("image", Image())
202
+
203
+ training_args = Seq2SeqTrainingArguments(
204
+ predict_with_generate=True,
205
+ output_dir = "idefics2",
206
+ learning_rate = 2e-4,
207
+ fp16 = True,
208
+ per_device_train_batch_size = 8,
209
+ per_device_eval_batch_size = 8,
210
+ gradient_accumulation_steps = 2,
211
+ dataloader_pin_memory = False,
212
+ save_total_limit = 3,
213
+ eval_strategy ="steps",
214
+ save_strategy = "steps",
215
+ eval_steps = 500,
216
+ save_steps = 1000,
217
+ max_steps = 5000,
218
+ logging_steps = 10,
219
+ remove_unused_columns = False,
220
+ push_to_hub=True,
221
+ label_names = ["labels"],
222
+ load_best_model_at_end = False,
223
+ report_to = "wandb",
224
+ optim = "paged_adamw_8bit",
225
+ # run_name=f"idefics2-vision-LoRA-{datetime.now().strftime('%Y-%m-%d-%H-%M-%s')}",
226
+ run_name="idefics2-vision-LoRA-" + str(samp),
227
+ hub_model_id="hadrakey/alphapen_idefics2_" + str(samp),
228
+ )
229
 
230
+ def compute_metrics(pred):
231
+ # accuracy_metric = evaluate.load("precision")
232
+ cer_metric = evaluate.load("cer")
233
+
234
+ labels_ids = pred.label_ids
235
+ pred_ids = pred.predictions
236
+ # print(pred_ids)
237
+ # print(labels_ids)
238
+ # max_length = max(pred_ids.shape[1], labels_ids.shape[1])
239
+ # generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)
240
+ pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
241
+ pred_str = [word.lower() for word in pred_str]
242
+ # print(pred_str)
243
+ # pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
244
+ labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
245
+ label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
246
+ label_str = [word.lower() for word in label_str]
247
+ # print(label_str)
248
+ cer = cer_metric.compute(predictions=pred_str, references=label_str)
249
+ # accuracy = accuracy_metric.compute(predictions=pred_ids.tolist(), references=labels_ids.tolist())
250
+
251
+ return {"cer": cer}
252
+
253
+
254
+ trainer = Seq2SeqTrainer(
255
+ model = model,
256
+ args = training_args,
257
+ data_collator = data_collator,
258
+ train_dataset = train_dataset,
259
+ eval_dataset = eval_dataset,
260
+ compute_metrics=compute_metrics,
261
+ )
262
 
263
+ trainer.train()
idefics2/adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1a529961f33fd865061f2d504f10e9dbda5d36ac583ca54c807b178a3eef0a02
3
  size 746528304
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e38855b7b26c79a86d6bc42985348143f602714b85923b6fcf6793830f400de
3
  size 746528304
idefics2/training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:42f9baac86ca26a549fd61c40400a3efd2e95f6a3486ca7a7482e10ccfbb4ac6
3
  size 5368
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c886ec66a448f0680d0a46cd28b697b6899ecc0627e105de6d1eac26f3c78140
3
  size 5368
inference.py CHANGED
@@ -1,9 +1,15 @@
1
  from transformers import TrOCRProcessor, VisionEncoderDecoderModel
2
  import pandas as pd
3
  from PIL import Image
 
4
 
5
  # Finetuned model
6
- model_finetune = VisionEncoderDecoderModel.from_pretrained("hadrakey/alphapen_trocr")
 
 
 
 
 
7
 
8
  #Baseline
9
  model_base = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
@@ -15,24 +21,78 @@ df_path = "/mnt/data1/Datasets/AlphaPen/" + "testing_data.csv"
15
  data = pd.read_csv(df_path)
16
  data.dropna(inplace=True)
17
  data.reset_index(inplace=True)
 
18
 
19
  root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/"
20
 
21
  inf_baseline = []
22
- inf_finetune = []
23
- for idx in range(len(data)):
24
- image = Image.open(root_dir + "final_cropped_rotated_" + data.filename[idx]).convert("RGB")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  pixel_values = processor(image, return_tensors="pt").pixel_values
27
  generated_ids_base = model_base.generate(pixel_values)
28
- generated_ids_fine = model_finetune.generate(pixel_values)
 
 
 
 
 
 
29
  generated_text_base = processor.batch_decode(generated_ids_base, skip_special_tokens=True)[0]
30
- generated_text_fine= processor.batch_decode(generated_ids_fine, skip_special_tokens=True)[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  inf_baseline.append(generated_text_base)
33
- inf_finetune.append(generated_text_fine)
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
- data["Baseline"]=inf_baseline
36
- data["Finetune"]=inf_finetune
 
 
 
 
 
37
 
38
- data.to_csv("/mnt/data1/Datasets/AlphaPen/" + "inference_data.csv")
 
1
  from transformers import TrOCRProcessor, VisionEncoderDecoderModel
2
  import pandas as pd
3
  from PIL import Image
4
+ from torchmetrics.text import CharErrorRate
5
 
6
  # Finetuned model
7
+ model_finetune_1 = VisionEncoderDecoderModel.from_pretrained("hadrakey/alphapen_new_large_1")
8
+ model_finetune_2 = VisionEncoderDecoderModel.from_pretrained("hadrakey/alphapen_new_large_15000")
9
+ model_finetune_3 = VisionEncoderDecoderModel.from_pretrained("hadrakey/alphapen_new_large_30000")
10
+ model_finetune_4 = VisionEncoderDecoderModel.from_pretrained("hadrakey/alphapen_new_large_45000")
11
+ model_finetune_5 = VisionEncoderDecoderModel.from_pretrained("hadrakey/alphapen_new_large_60000")
12
+ model_finetune_6 = VisionEncoderDecoderModel.from_pretrained("hadrakey/alphapen_new_large_70000")
13
 
14
  #Baseline
15
  model_base = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
 
21
  data = pd.read_csv(df_path)
22
  data.dropna(inplace=True)
23
  data.reset_index(inplace=True)
24
+ sample = data.iloc[:50,:]
25
 
26
  root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/"
27
 
28
  inf_baseline = []
29
+ inf_finetune_1 = []
30
+ inf_finetune_2 = []
31
+ inf_finetune_3 = []
32
+ inf_finetune_4 = []
33
+ inf_finetune_5 = []
34
+ inf_finetune_6 = []
35
+
36
+ cer_fine_1 = []
37
+ cer_fine_2 = []
38
+ cer_fine_3 = []
39
+ cer_fine_4 = []
40
+ cer_fine_5 = []
41
+ cer_fine_6 = []
42
+ cer_base = []
43
+
44
+ cer_metric = CharErrorRate()
45
+
46
+ for idx in range(len(sample)):
47
+ image = Image.open(root_dir + "final_cropped_rotated_" + sample.filename[idx]).convert("RGB")
48
 
49
  pixel_values = processor(image, return_tensors="pt").pixel_values
50
  generated_ids_base = model_base.generate(pixel_values)
51
+ generated_ids_fine_1 = model_finetune_1.generate(pixel_values)
52
+ generated_ids_fine_2= model_finetune_2.generate(pixel_values)
53
+ generated_ids_fine_3 = model_finetune_3.generate(pixel_values)
54
+ generated_ids_fine_4 = model_finetune_4.generate(pixel_values)
55
+ generated_ids_fine_5 = model_finetune_5.generate(pixel_values)
56
+ generated_ids_fine_6 = model_finetune_6.generate(pixel_values)
57
+
58
  generated_text_base = processor.batch_decode(generated_ids_base, skip_special_tokens=True)[0]
59
+ generated_text_fine_1= processor.batch_decode(generated_ids_fine_1, skip_special_tokens=True)[0]
60
+ generated_text_fine_2= processor.batch_decode(generated_ids_fine_2, skip_special_tokens=True)[0]
61
+ generated_text_fine_3= processor.batch_decode(generated_ids_fine_3, skip_special_tokens=True)[0]
62
+ generated_text_fine_4= processor.batch_decode(generated_ids_fine_4, skip_special_tokens=True)[0]
63
+ generated_text_fine_5= processor.batch_decode(generated_ids_fine_5, skip_special_tokens=True)[0]
64
+ generated_text_fine_6= processor.batch_decode(generated_ids_fine_6, skip_special_tokens=True)[0]
65
+
66
+ cer_fine_1.append(cer_metric(generated_text_fine_1.lower(), sample.text[idx].lower()).detach().numpy())
67
+ cer_fine_2.append(cer_metric(generated_text_fine_2.lower(), sample.text[idx].lower()).detach().numpy())
68
+ cer_fine_3.append(cer_metric(generated_text_fine_3.lower(), sample.text[idx].lower()).detach().numpy())
69
+ cer_fine_4.append(cer_metric(generated_text_fine_4.lower(), sample.text[idx].lower()).detach().numpy())
70
+ cer_fine_5.append(cer_metric(generated_text_fine_5.lower(), sample.text[idx].lower()).detach().numpy())
71
+ cer_fine_6.append(cer_metric(generated_text_fine_6.lower(), sample.text[idx].lower()).detach().numpy())
72
+ cer_base.append(cer_metric(generated_text_base.lower(), sample.text[idx].lower()).detach().numpy())
73
 
74
  inf_baseline.append(generated_text_base)
75
+ inf_finetune_1.append(generated_text_fine_1)
76
+ inf_finetune_2.append(generated_text_fine_2)
77
+ inf_finetune_3.append(generated_text_fine_3)
78
+ inf_finetune_4.append(generated_text_fine_4)
79
+ inf_finetune_5.append(generated_text_fine_5)
80
+ inf_finetune_6.append(generated_text_fine_6)
81
+
82
+ sample["Baseline"]=inf_baseline
83
+ sample["Finetune_1"]=inf_finetune_1
84
+ sample["Finetune_2"]=inf_finetune_2
85
+ sample["Finetune_3"]=inf_finetune_3
86
+ sample["Finetune_4"]=inf_finetune_4
87
+ sample["Finetune_5"]=inf_finetune_5
88
+ sample["Finetune_6"]=inf_finetune_6
89
 
90
+ sample["cer_1"]=cer_fine_1
91
+ sample["cer_2"]=cer_fine_2
92
+ sample["cer_3"]=cer_fine_3
93
+ sample["cer_4"]=cer_fine_4
94
+ sample["cer_5"]=cer_fine_5
95
+ sample["cer_6"]=cer_fine_6
96
+ sample["cer_base"]=cer_base
97
 
98
+ sample.to_csv("/mnt/data1/Datasets/AlphaPen/" + "inference_results.csv")
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4b5c9a57267f9760bd4a7647d8ba830dc2631f0d0cd17ce843b0c314a00d5e79
3
  size 1335747032
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b14472ca382e9d96ea7efd3c778cbf0b73a412e31bc41cfec8d97e8988e6063d
3
  size 1335747032
trainer_lora.py CHANGED
@@ -18,8 +18,9 @@ from src.loss import MarginLoss, KLRegularization
18
  from src.similarity import CERSimilarity
19
  from datetime import datetime
20
  from torch.utils.data import ConcatDataset
 
 
21
 
22
- os.environ["WANDB_PROJECT"] = "Alphapen-TrOCR"
23
 
24
  # @dataclass
25
  # class ScriptArguments:
@@ -56,10 +57,10 @@ root_dir = "/mnt/data1/Datasets/OCR/Alphapen/clean_data/final_cropped_rotated_"
56
  root_dir_b2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/clean_data/cropped_data/cropped_"
57
  processor = TrOCRProcessor.from_pretrained(model_name)
58
 
59
- train_dataset_b1 = AphaPenDataset(root_dir=root_dir, df=train_df, processor=processor)
60
- eval_dataset_b1 = AphaPenDataset(root_dir=root_dir, df=test_df, processor=processor)
61
 
62
- eval_dataset_b2 = AphaPenDataset(root_dir=root_dir_b2, df=test_df_b2, processor=processor)
63
 
64
  # train_dataset = ConcatDataset([train_dataset_b1, train_dataset_b2])
65
  eval_dataset = ConcatDataset([eval_dataset_b1, eval_dataset_b2])
@@ -119,6 +120,7 @@ model = get_peft_model(model, lora_config)
119
 
120
  # from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
121
  for samp in samp_list:
 
122
  train_dataset_b2 = AphaPenDataset(root_dir=root_dir_b2, df=train_df_b2.iloc[:samp,:], processor=processor)
123
 
124
  train_dataset = ConcatDataset([train_dataset_b1, train_dataset_b2])
@@ -179,4 +181,5 @@ for samp in samp_list:
179
  # callbacks=[SavePeftModelCallback]
180
  )
181
 
182
- trainer.train()
 
 
18
  from src.similarity import CERSimilarity
19
  from datetime import datetime
20
  from torch.utils.data import ConcatDataset
21
+ import wandb
22
+
23
 
 
24
 
25
  # @dataclass
26
  # class ScriptArguments:
 
57
  root_dir_b2 = "/mnt/data1/Datasets/OCR/Alphapen/DataBatch2/clean_data/cropped_data/cropped_"
58
  processor = TrOCRProcessor.from_pretrained(model_name)
59
 
60
+ train_dataset_b1 = AphaPenDataset(root_dir=root_dir, df=train_df.iloc[:100,:], processor=processor)
61
+ eval_dataset_b1 = AphaPenDataset(root_dir=root_dir, df=test_df.iloc[:100,:], processor=processor)
62
 
63
+ eval_dataset_b2 = AphaPenDataset(root_dir=root_dir_b2, df=test_df_b2.iloc[:100,:], processor=processor)
64
 
65
  # train_dataset = ConcatDataset([train_dataset_b1, train_dataset_b2])
66
  eval_dataset = ConcatDataset([eval_dataset_b1, eval_dataset_b2])
 
120
 
121
  # from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
122
  for samp in samp_list:
123
+ os.environ["WANDB_PROJECT"] = "Alphapen-TrOCR"
124
  train_dataset_b2 = AphaPenDataset(root_dir=root_dir_b2, df=train_df_b2.iloc[:samp,:], processor=processor)
125
 
126
  train_dataset = ConcatDataset([train_dataset_b1, train_dataset_b2])
 
181
  # callbacks=[SavePeftModelCallback]
182
  )
183
 
184
+ trainer.train()
185
+ wandb.finish()
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:47866b7d56154c5af2ead2dd9b39c99b09ed7fcd9d7ab3b817d6a685abc94835
3
  size 5368
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dee27664eb5dbd1e3cc935d19708874101ea117d0baf6647d382db3446b7c24
3
  size 5368