hackyon commited on
Commit
0e378f2
1 Parent(s): 32e05f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -172
README.md CHANGED
@@ -1,11 +1,13 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
10
 
11
 
@@ -13,189 +15,44 @@ tags: []
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
 
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
  ---
5
 
6
+ # Model Card for EncT5
7
 
8
+ EncT5 is a variant of T5 that utilizes mainly the encoder for non-autoregressive (ie. classification and regression)
9
+ tasks. The model is from the paper [Fine-tuning T5 Encoder for Non-autoregressive Tasks](https://arxiv.org/abs/2110.08426)
10
+ by Frederick Liu, Terry Huang, Shihang Lyu, Siamak Shakeri, Hongkun Yu, Jing Li
11
 
12
 
13
 
 
15
 
16
  ### Model Description
17
 
18
+ EncT5 uses the same base weights at T5, but **must be fine-tuning before use**. There are several special features
19
+ to EncT5:
20
 
21
+ 1. There are less decoder layers (a single decoder layer by default), and so has fewer parameters/resources than the
22
+ standard T5.
23
+ 3. There is a separate decoder word embedding, with the decoder input ids being predefined constants. During
24
+ fine-tuning, these constants are trained to effectively "prompt" the encoder to perform the necessary
25
+ classification/regression tasks.
26
+ 4. There is a classification head on top of the decoder output.
27
 
28
+ Research has shown that this model can be more efficient and usable over T5 and BERT for non-autoregressive
29
+ tasks such as classification and regression.
 
 
 
 
 
30
 
31
+ - **Developed by:** Frederick Liu, Terry Huang, Shihang Lyu, Siamak Shakeri, Hongkun Yu, Jing Li. See
32
+ [associated paper](https://arxiv.org/abs/2110.08426)
33
+ - **Model type:** Language Model
34
+ - **Language(s) (NLP):** English, French, Romanian, German
35
+ - **License:** Apache 2.0
36
+ - **Based on model:** [T5](https://huggingface.co/google-t5/t5-base)
37
+ - **Repository:** [Github repro](https://github.com/hackyon/EncT5)
38
+ - **Paper:** [Fine-tuning T5 Encoder for Non-autoregressive Tasks](https://arxiv.org/abs/2110.08426)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  ## How to Get Started with the Model
41
 
42
  Use the code below to get started with the model.
43
 
44
+ model = AutoModelForSequenceClassification.from_pretrained("hackyon/enct5-base", trust_remote_code=True)
45
+ # Fine-tune the model before use.
46
+
47
+ See the [github repro](https://github.com/hackyon/EncT5) for a more comprehensive guide.
48
 
49
  ## Training Details
50
 
51
  ### Training Data
52
 
53
+ The weights of this model are directly copied from [t5-base](https://huggingface.co/google-t5/t5-base).
 
 
54
 
55
  ### Training Procedure
56
 
57
+ This model **must be fine-tuned** before use. The decoder word embedding and classification head are both untrained.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58