habanoz commited on
Commit
99b0438
1 Parent(s): 89179d0

Reiteration

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO-MLPPolicy
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 278.65 +/- 28.36
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO-MLPPolicy** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO-MLPPolicy** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f57868ab040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f57868ab0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f57868ab160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f57868ab1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f57868ab280>", "forward": "<function ActorCriticPolicy.forward at 0x7f57868ab310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f57868ab3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f57868ab430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57868ab4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f57868ab550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f57868ab5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f57868a7540>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673258876471962198, "learning_rate": 0.0003, "tensorboard_log": "./a2c_cartpole_tensorboard/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObBUj7osk0/0sCfvYnlBL/TOec+HTNAvgAAAAAAAAAAM7W9PVw/XbpQjWS4j12Ls89vIDsm4oU3AACAPwAAAADax7W9cesMu7M4ZT6nXL+95se7vPrwMb8AAIA/AACAPx6wlb4aBJ0/FlnJvnnRAb8WW9y+WiE3vgAAAAAAAAAAmtZ4vbtvuD/nEEm+LGiYvi25Rb2naRK+AAAAAAAAAACac329Paw1u2D97zysO309dwpSPHtWI7sAAIA/AACAP7OeLD1S+vs8AXs9vPfMg77T35s9LXHCvAAAAAAAAAAApiPYvfYPXD/Lf6q9b2/FvqhlBL6rYyo9AAAAAAAAAABAcOG99gQIus3JebrmUhI1CaXhulpkkzkAAIA/AAAAAFqdk72PA2U/sgSCvB9xl77ikoW9roHFPQAAAAAAAAAAzRZxPtYQkj83hCo9mnvYvkEcnD5w0Bm+AAAAAAAAAADN8R29H83YueqA7baASpgwnNPMu7IBDTYAAIA/AACAPxobdj7zgng/vQOTvcch8L419+I+Cqo9vgAAAAAAAAAAzcx5PClBb7yGSLq8Z079vfNQgzsLl9g7AACAPwAAgD/NrYK8SPSoPaMuBr0POlO+rn/VvcbSzj0AAAAAAAAAALOpi70fFeK56j3JN8bmmjOXzQg7lU7xtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVWRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDD84n7pGb0CUhpRSlIwBbJRNIAGMAXSUR0C5S2pkoWpIdX2UKGgGaAloD0MIkq8EUmIzOUCUhpRSlGgVS8poFkdAuUuqsMiKSHV9lChoBmgJaA9DCOyIQzZQbnJAlIaUUpRoFUv+aBZHQLlLsRTS9dx1fZQoaAZoCWgPQwi4BrZKMNxxQJSGlFKUaBVNBAFoFkdAuUwMLy+YdHV9lChoBmgJaA9DCJMa2gBsZXBAlIaUUpRoFUvwaBZHQLlMJ7MxGlR1fZQoaAZoCWgPQwi/f/PiBO1xQJSGlFKUaBVNVAFoFkdAuUwsTufEoHV9lChoBmgJaA9DCOCe508bN3NAlIaUUpRoFU0xAWgWR0C5TEUbLlmwdX2UKGgGaAloD0MIJv29FJ5YbUCUhpRSlGgVTRoBaBZHQLlMd/ViF0x1fZQoaAZoCWgPQwgY0uEhjFpvQJSGlFKUaBVNRAFoFkdAuUyWdmQKbHV9lChoBmgJaA9DCF4qNub1qXBAlIaUUpRoFU0dAWgWR0C5TKH09QoDdX2UKGgGaAloD0MI46qy78qNcECUhpRSlGgVS+JoFkdAuUzI8yN4q3V9lChoBmgJaA9DCLbbLjRXVnJAlIaUUpRoFU0AAWgWR0C5TPU/8l5XdX2UKGgGaAloD0MIkLxzKIPGcECUhpRSlGgVTRoBaBZHQLlM/RIjGDN1fZQoaAZoCWgPQwiCGr6F9atwQJSGlFKUaBVL/GgWR0C5TSBT0g8sdX2UKGgGaAloD0MINpGZC9x7cECUhpRSlGgVTToBaBZHQLlNJ9OARTV1fZQoaAZoCWgPQwiy1eWUgDRyQJSGlFKUaBVNKgFoFkdAuU1Iikfs/3V9lChoBmgJaA9DCH4dOGeEK3JAlIaUUpRoFUvgaBZHQLlNWiNbTtt1fZQoaAZoCWgPQwgdylAVUz5vQJSGlFKUaBVNEwFoFkdAuU1rLFGXonV9lChoBmgJaA9DCJfjFYgey25AlIaUUpRoFU0MAWgWR0C5TaD+WGATdX2UKGgGaAloD0MIyJQPQZV1ckCUhpRSlGgVS+doFkdAuU26X2M85nV9lChoBmgJaA9DCJYJv9TPdnBAlIaUUpRoFUv3aBZHQLlN8zt1IRR1fZQoaAZoCWgPQwhcy2Q4HgVxQJSGlFKUaBVL/GgWR0C5TfdyT6i1dX2UKGgGaAloD0MILo81IwN3bkCUhpRSlGgVS/5oFkdAuU5IhTwUg3V9lChoBmgJaA9DCKUyxRwEdXFAlIaUUpRoFU0dAWgWR0C5TlIIBzV+dX2UKGgGaAloD0MIY7fPKvOAckCUhpRSlGgVS+RoFkdAuU6cGgSOBHV9lChoBmgJaA9DCOvDeqNWzXFAlIaUUpRoFUv0aBZHQLlOteRPoFF1fZQoaAZoCWgPQwiP44dKIwxyQJSGlFKUaBVNCQFoFkdAuU62Z+hGpnV9lChoBmgJaA9DCPAUcqWe0m5AlIaUUpRoFUvraBZHQLlO2CsOoYN1fZQoaAZoCWgPQwi+UMB2cKxwQJSGlFKUaBVL/WgWR0C5TvLupjtpdX2UKGgGaAloD0MIqwg3GZXUckCUhpRSlGgVS/doFkdAuU86uW8h93V9lChoBmgJaA9DCIPg8e0dKnFAlIaUUpRoFU0eAWgWR0C5T3U56t1ZdX2UKGgGaAloD0MI6EzaVF1tcUCUhpRSlGgVS/VoFkdAuU+TvTgEU3V9lChoBmgJaA9DCJyk+WMaAHNAlIaUUpRoFU0RAWgWR0C5T64GpuMudX2UKGgGaAloD0MI6QyMvOwkcUCUhpRSlGgVS/doFkdAuU/a57PY4HV9lChoBmgJaA9DCBTMmIK1mHFAlIaUUpRoFU12AWgWR0C5UBVf/m1ZdX2UKGgGaAloD0MIWTLH8i7NcECUhpRSlGgVS+5oFkdAuVAnMfRu0nV9lChoBmgJaA9DCMZOeAnOi3FAlIaUUpRoFU0qAWgWR0C5UEo42jwhdX2UKGgGaAloD0MItCJqos8pcUCUhpRSlGgVTR0BaBZHQLlQl6hg3Lp1fZQoaAZoCWgPQwh5ILJIEw9vQJSGlFKUaBVNAAFoFkdAuVDEOMERrnV9lChoBmgJaA9DCOuNWmG6L3FAlIaUUpRoFUv/aBZHQLlQ6okRjBl1fZQoaAZoCWgPQwi+FYkJ6lhwQJSGlFKUaBVNFAFoFkdAuVDv7+DODHV9lChoBmgJaA9DCFJHx9UIOXFAlIaUUpRoFU0EAWgWR0C5UQ/O6d1/dX2UKGgGaAloD0MIBtmyfJ3Cc0CUhpRSlGgVS+hoFkdAuVFYJzDGcXV9lChoBmgJaA9DCHeiJCQSZHFAlIaUUpRoFU1dAWgWR0C5UWiqlxffdX2UKGgGaAloD0MIkWRW7/DOcECUhpRSlGgVS+VoFkdAuVFxTYNAknV9lChoBmgJaA9DCCmSrwTSim5AlIaUUpRoFU0TAWgWR0C5UXUBsANodX2UKGgGaAloD0MI4iL3dPV9ckCUhpRSlGgVS/1oFkdAuVHhHww0wnV9lChoBmgJaA9DCLoSgeqfNG9AlIaUUpRoFUv0aBZHQLlSH3s5XEJ1fZQoaAZoCWgPQwiGyOnr+W9tQJSGlFKUaBVNAAFoFkdAuVIlywOe8XV9lChoBmgJaA9DCPa1LjWCfnJAlIaUUpRoFUv3aBZHQLlXcI8QqZt1fZQoaAZoCWgPQwiKIqRu50hyQJSGlFKUaBVNBwFoFkdAuVfu7Ciyp3V9lChoBmgJaA9DCD3RdeEH9HBAlIaUUpRoFU0SAWgWR0C5WBAvtdAxdX2UKGgGaAloD0MIie/ErBehcECUhpRSlGgVS+hoFkdAuVg+27Wd3HV9lChoBmgJaA9DCO/mqQ65xHBAlIaUUpRoFU10AWgWR0C5WEfD1oQGdX2UKGgGaAloD0MIAMRdvUrpcECUhpRSlGgVS/RoFkdAuVhkMspXqHV9lChoBmgJaA9DCDs3bcbpSW9AlIaUUpRoFU0EAWgWR0C5WItsSCe3dX2UKGgGaAloD0MI6njMQGXBb0CUhpRSlGgVTR0BaBZHQLlYo0u14Ph1fZQoaAZoCWgPQwgOnglNkpxxQJSGlFKUaBVNCQFoFkdAuVkSdYnv2HV9lChoBmgJaA9DCOXuc3w0/nFAlIaUUpRoFU0DAWgWR0C5WUe0G/vfdX2UKGgGaAloD0MIxebj2lCQZkCUhpRSlGgVTegDaBZHQLlZbKCQLeB1fZQoaAZoCWgPQwgKo1nZPj1VQJSGlFKUaBVN6ANoFkdAuVl6attALXV9lChoBmgJaA9DCISaIVWUPnBAlIaUUpRoFU3VAWgWR0C5Wd4EB8x9dX2UKGgGaAloD0MIkC+hgsMgbUCUhpRSlGgVS+hoFkdAuVo9UVBUrHV9lChoBmgJaA9DCL4uw386NHFAlIaUUpRoFU0+AWgWR0C5Wj87dSEUdX2UKGgGaAloD0MIMUW5NP6mbUCUhpRSlGgVTQUBaBZHQLlaVSjQAuJ1fZQoaAZoCWgPQwgYXHNHv6ZwQJSGlFKUaBVNDgFoFkdAuVqcr5IpY3V9lChoBmgJaA9DCNcYdEKoDXNAlIaUUpRoFUv/aBZHQLlawsgMc6x1fZQoaAZoCWgPQwiBfAkVnGpvQJSGlFKUaBVN5QJoFkdAuVrU3DNyHXV9lChoBmgJaA9DCF69iozOS3FAlIaUUpRoFU0DAWgWR0C5WuWv0RODdX2UKGgGaAloD0MI28AdqJOPckCUhpRSlGgVTWoBaBZHQLlbGhxo7FN1fZQoaAZoCWgPQwgfhlYnZ7puQJSGlFKUaBVNVgFoFkdAuVtWX4TK1XV9lChoBmgJaA9DCP6cgvxsvXFAlIaUUpRoFUvtaBZHQLlbhYoy9El1fZQoaAZoCWgPQwiZSj/hbDVxQJSGlFKUaBVNLwFoFkdAuVvhGH58B3V9lChoBmgJaA9DCLfT1oggeXFAlIaUUpRoFU1KAWgWR0C5W+RxT850dX2UKGgGaAloD0MIkbWGUntibkCUhpRSlGgVTS8BaBZHQLlcBcc2itd1fZQoaAZoCWgPQwhNhA1Pb/pwQJSGlFKUaBVN9QJoFkdAuVwKdjG1hXV9lChoBmgJaA9DCBr6J7gYM3BAlIaUUpRoFU0fAWgWR0C5XEkmplz2dX2UKGgGaAloD0MIlE+PbZmgckCUhpRSlGgVTQQBaBZHQLlcczmOlwd1fZQoaAZoCWgPQwjv5xTkZ3xvQJSGlFKUaBVNFwFoFkdAuVyEFmnO0XV9lChoBmgJaA9DCLggW5Yv2XFAlIaUUpRoFUvwaBZHQLlciRT0g8t1fZQoaAZoCWgPQwgnbD8Z4xlxQJSGlFKUaBVNMwFoFkdAuVy38Nx2jnV9lChoBmgJaA9DCL3IBPxa5XJAlIaUUpRoFUvhaBZHQLldQO6d1+11fZQoaAZoCWgPQwj7P4f5MqlwQJSGlFKUaBVL+mgWR0C5XUPZZjhDdX2UKGgGaAloD0MIT135LE/ocUCUhpRSlGgVTSQBaBZHQLldXqLjxTd1fZQoaAZoCWgPQwi0rtFy4GRyQJSGlFKUaBVNVgFoFkdAuV1y8SPEKnV9lChoBmgJaA9DCOZ0WUysEnJAlIaUUpRoFU1UAWgWR0C5XYriuMdcdX2UKGgGaAloD0MIumjIeNTIcUCUhpRSlGgVS/5oFkdAuV3OruIAO3V9lChoBmgJaA9DCEbOwp52dHBAlIaUUpRoFUvtaBZHQLld1mCiAUd1fZQoaAZoCWgPQwjZsKayKAdxQJSGlFKUaBVNIAFoFkdAuV4bIhhYvHV9lChoBmgJaA9DCPVLxFvnhnNAlIaUUpRoFU0mAWgWR0C5XkxQWN3odX2UKGgGaAloD0MIqRJlbyk3cUCUhpRSlGgVS95oFkdAuV5L5Ec81XV9lChoBmgJaA9DCKZgjbMpIXFAlIaUUpRoFU0IAWgWR0C5XluH31zydX2UKGgGaAloD0MIAd2XM9tMckCUhpRSlGgVS/RoFkdAuV5gnUlRg3V9lChoBmgJaA9DCOpYpfTM1m9AlIaUUpRoFUv8aBZHQLlfWy+YdAB1fZQoaAZoCWgPQwhYPPVIgxleQJSGlFKUaBVN6ANoFkdAuV9dgF5fMXV9lChoBmgJaA9DCMHEH0Wd3nFAlIaUUpRoFU1BAWgWR0C5X2A9mpVCdX2UKGgGaAloD0MIvsEXJtMncECUhpRSlGgVS/9oFkdAuV9l74SHunV9lChoBmgJaA9DCAlP6PXnV3BAlIaUUpRoFUv2aBZHQLlfb+UQkHF1fZQoaAZoCWgPQwh3Sgfr/7hwQJSGlFKUaBVL6WgWR0C5X4MqFyq/dX2UKGgGaAloD0MIMEllijnOcECUhpRSlGgVTYMBaBZHQLlfrhbW3Bp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-ts1M.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4a42ddf9f2626b55f39e845b8c999a76677164374085a06ad799b24e519b004
3
+ size 147193
ppo-LunarLander-v2-ts1M/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-ts1M/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f57868ab040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f57868ab0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f57868ab160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f57868ab1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f57868ab280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f57868ab310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f57868ab3a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f57868ab430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f57868ab4c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f57868ab550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f57868ab5e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f57868a7540>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673258876471962198,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": "./a2c_cartpole_tensorboard/",
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObBUj7osk0/0sCfvYnlBL/TOec+HTNAvgAAAAAAAAAAM7W9PVw/XbpQjWS4j12Ls89vIDsm4oU3AACAPwAAAADax7W9cesMu7M4ZT6nXL+95se7vPrwMb8AAIA/AACAPx6wlb4aBJ0/FlnJvnnRAb8WW9y+WiE3vgAAAAAAAAAAmtZ4vbtvuD/nEEm+LGiYvi25Rb2naRK+AAAAAAAAAACac329Paw1u2D97zysO309dwpSPHtWI7sAAIA/AACAP7OeLD1S+vs8AXs9vPfMg77T35s9LXHCvAAAAAAAAAAApiPYvfYPXD/Lf6q9b2/FvqhlBL6rYyo9AAAAAAAAAABAcOG99gQIus3JebrmUhI1CaXhulpkkzkAAIA/AAAAAFqdk72PA2U/sgSCvB9xl77ikoW9roHFPQAAAAAAAAAAzRZxPtYQkj83hCo9mnvYvkEcnD5w0Bm+AAAAAAAAAADN8R29H83YueqA7baASpgwnNPMu7IBDTYAAIA/AACAPxobdj7zgng/vQOTvcch8L419+I+Cqo9vgAAAAAAAAAAzcx5PClBb7yGSLq8Z079vfNQgzsLl9g7AACAPwAAgD/NrYK8SPSoPaMuBr0POlO+rn/VvcbSzj0AAAAAAAAAALOpi70fFeK56j3JN8bmmjOXzQg7lU7xtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVWRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDD84n7pGb0CUhpRSlIwBbJRNIAGMAXSUR0C5S2pkoWpIdX2UKGgGaAloD0MIkq8EUmIzOUCUhpRSlGgVS8poFkdAuUuqsMiKSHV9lChoBmgJaA9DCOyIQzZQbnJAlIaUUpRoFUv+aBZHQLlLsRTS9dx1fZQoaAZoCWgPQwi4BrZKMNxxQJSGlFKUaBVNBAFoFkdAuUwMLy+YdHV9lChoBmgJaA9DCJMa2gBsZXBAlIaUUpRoFUvwaBZHQLlMJ7MxGlR1fZQoaAZoCWgPQwi/f/PiBO1xQJSGlFKUaBVNVAFoFkdAuUwsTufEoHV9lChoBmgJaA9DCOCe508bN3NAlIaUUpRoFU0xAWgWR0C5TEUbLlmwdX2UKGgGaAloD0MIJv29FJ5YbUCUhpRSlGgVTRoBaBZHQLlMd/ViF0x1fZQoaAZoCWgPQwgY0uEhjFpvQJSGlFKUaBVNRAFoFkdAuUyWdmQKbHV9lChoBmgJaA9DCF4qNub1qXBAlIaUUpRoFU0dAWgWR0C5TKH09QoDdX2UKGgGaAloD0MI46qy78qNcECUhpRSlGgVS+JoFkdAuUzI8yN4q3V9lChoBmgJaA9DCLbbLjRXVnJAlIaUUpRoFU0AAWgWR0C5TPU/8l5XdX2UKGgGaAloD0MIkLxzKIPGcECUhpRSlGgVTRoBaBZHQLlM/RIjGDN1fZQoaAZoCWgPQwiCGr6F9atwQJSGlFKUaBVL/GgWR0C5TSBT0g8sdX2UKGgGaAloD0MINpGZC9x7cECUhpRSlGgVTToBaBZHQLlNJ9OARTV1fZQoaAZoCWgPQwiy1eWUgDRyQJSGlFKUaBVNKgFoFkdAuU1Iikfs/3V9lChoBmgJaA9DCH4dOGeEK3JAlIaUUpRoFUvgaBZHQLlNWiNbTtt1fZQoaAZoCWgPQwgdylAVUz5vQJSGlFKUaBVNEwFoFkdAuU1rLFGXonV9lChoBmgJaA9DCJfjFYgey25AlIaUUpRoFU0MAWgWR0C5TaD+WGATdX2UKGgGaAloD0MIyJQPQZV1ckCUhpRSlGgVS+doFkdAuU26X2M85nV9lChoBmgJaA9DCJYJv9TPdnBAlIaUUpRoFUv3aBZHQLlN8zt1IRR1fZQoaAZoCWgPQwhcy2Q4HgVxQJSGlFKUaBVL/GgWR0C5TfdyT6i1dX2UKGgGaAloD0MILo81IwN3bkCUhpRSlGgVS/5oFkdAuU5IhTwUg3V9lChoBmgJaA9DCKUyxRwEdXFAlIaUUpRoFU0dAWgWR0C5TlIIBzV+dX2UKGgGaAloD0MIY7fPKvOAckCUhpRSlGgVS+RoFkdAuU6cGgSOBHV9lChoBmgJaA9DCOvDeqNWzXFAlIaUUpRoFUv0aBZHQLlOteRPoFF1fZQoaAZoCWgPQwiP44dKIwxyQJSGlFKUaBVNCQFoFkdAuU62Z+hGpnV9lChoBmgJaA9DCPAUcqWe0m5AlIaUUpRoFUvraBZHQLlO2CsOoYN1fZQoaAZoCWgPQwi+UMB2cKxwQJSGlFKUaBVL/WgWR0C5TvLupjtpdX2UKGgGaAloD0MIqwg3GZXUckCUhpRSlGgVS/doFkdAuU86uW8h93V9lChoBmgJaA9DCIPg8e0dKnFAlIaUUpRoFU0eAWgWR0C5T3U56t1ZdX2UKGgGaAloD0MI6EzaVF1tcUCUhpRSlGgVS/VoFkdAuU+TvTgEU3V9lChoBmgJaA9DCJyk+WMaAHNAlIaUUpRoFU0RAWgWR0C5T64GpuMudX2UKGgGaAloD0MI6QyMvOwkcUCUhpRSlGgVS/doFkdAuU/a57PY4HV9lChoBmgJaA9DCBTMmIK1mHFAlIaUUpRoFU12AWgWR0C5UBVf/m1ZdX2UKGgGaAloD0MIWTLH8i7NcECUhpRSlGgVS+5oFkdAuVAnMfRu0nV9lChoBmgJaA9DCMZOeAnOi3FAlIaUUpRoFU0qAWgWR0C5UEo42jwhdX2UKGgGaAloD0MItCJqos8pcUCUhpRSlGgVTR0BaBZHQLlQl6hg3Lp1fZQoaAZoCWgPQwh5ILJIEw9vQJSGlFKUaBVNAAFoFkdAuVDEOMERrnV9lChoBmgJaA9DCOuNWmG6L3FAlIaUUpRoFUv/aBZHQLlQ6okRjBl1fZQoaAZoCWgPQwi+FYkJ6lhwQJSGlFKUaBVNFAFoFkdAuVDv7+DODHV9lChoBmgJaA9DCFJHx9UIOXFAlIaUUpRoFU0EAWgWR0C5UQ/O6d1/dX2UKGgGaAloD0MIBtmyfJ3Cc0CUhpRSlGgVS+hoFkdAuVFYJzDGcXV9lChoBmgJaA9DCHeiJCQSZHFAlIaUUpRoFU1dAWgWR0C5UWiqlxffdX2UKGgGaAloD0MIkWRW7/DOcECUhpRSlGgVS+VoFkdAuVFxTYNAknV9lChoBmgJaA9DCCmSrwTSim5AlIaUUpRoFU0TAWgWR0C5UXUBsANodX2UKGgGaAloD0MI4iL3dPV9ckCUhpRSlGgVS/1oFkdAuVHhHww0wnV9lChoBmgJaA9DCLoSgeqfNG9AlIaUUpRoFUv0aBZHQLlSH3s5XEJ1fZQoaAZoCWgPQwiGyOnr+W9tQJSGlFKUaBVNAAFoFkdAuVIlywOe8XV9lChoBmgJaA9DCPa1LjWCfnJAlIaUUpRoFUv3aBZHQLlXcI8QqZt1fZQoaAZoCWgPQwiKIqRu50hyQJSGlFKUaBVNBwFoFkdAuVfu7Ciyp3V9lChoBmgJaA9DCD3RdeEH9HBAlIaUUpRoFU0SAWgWR0C5WBAvtdAxdX2UKGgGaAloD0MIie/ErBehcECUhpRSlGgVS+hoFkdAuVg+27Wd3HV9lChoBmgJaA9DCO/mqQ65xHBAlIaUUpRoFU10AWgWR0C5WEfD1oQGdX2UKGgGaAloD0MIAMRdvUrpcECUhpRSlGgVS/RoFkdAuVhkMspXqHV9lChoBmgJaA9DCDs3bcbpSW9AlIaUUpRoFU0EAWgWR0C5WItsSCe3dX2UKGgGaAloD0MI6njMQGXBb0CUhpRSlGgVTR0BaBZHQLlYo0u14Ph1fZQoaAZoCWgPQwgOnglNkpxxQJSGlFKUaBVNCQFoFkdAuVkSdYnv2HV9lChoBmgJaA9DCOXuc3w0/nFAlIaUUpRoFU0DAWgWR0C5WUe0G/vfdX2UKGgGaAloD0MIxebj2lCQZkCUhpRSlGgVTegDaBZHQLlZbKCQLeB1fZQoaAZoCWgPQwgKo1nZPj1VQJSGlFKUaBVN6ANoFkdAuVl6attALXV9lChoBmgJaA9DCISaIVWUPnBAlIaUUpRoFU3VAWgWR0C5Wd4EB8x9dX2UKGgGaAloD0MIkC+hgsMgbUCUhpRSlGgVS+hoFkdAuVo9UVBUrHV9lChoBmgJaA9DCL4uw386NHFAlIaUUpRoFU0+AWgWR0C5Wj87dSEUdX2UKGgGaAloD0MIMUW5NP6mbUCUhpRSlGgVTQUBaBZHQLlaVSjQAuJ1fZQoaAZoCWgPQwgYXHNHv6ZwQJSGlFKUaBVNDgFoFkdAuVqcr5IpY3V9lChoBmgJaA9DCNcYdEKoDXNAlIaUUpRoFUv/aBZHQLlawsgMc6x1fZQoaAZoCWgPQwiBfAkVnGpvQJSGlFKUaBVN5QJoFkdAuVrU3DNyHXV9lChoBmgJaA9DCF69iozOS3FAlIaUUpRoFU0DAWgWR0C5WuWv0RODdX2UKGgGaAloD0MI28AdqJOPckCUhpRSlGgVTWoBaBZHQLlbGhxo7FN1fZQoaAZoCWgPQwgfhlYnZ7puQJSGlFKUaBVNVgFoFkdAuVtWX4TK1XV9lChoBmgJaA9DCP6cgvxsvXFAlIaUUpRoFUvtaBZHQLlbhYoy9El1fZQoaAZoCWgPQwiZSj/hbDVxQJSGlFKUaBVNLwFoFkdAuVvhGH58B3V9lChoBmgJaA9DCLfT1oggeXFAlIaUUpRoFU1KAWgWR0C5W+RxT850dX2UKGgGaAloD0MIkbWGUntibkCUhpRSlGgVTS8BaBZHQLlcBcc2itd1fZQoaAZoCWgPQwhNhA1Pb/pwQJSGlFKUaBVN9QJoFkdAuVwKdjG1hXV9lChoBmgJaA9DCBr6J7gYM3BAlIaUUpRoFU0fAWgWR0C5XEkmplz2dX2UKGgGaAloD0MIlE+PbZmgckCUhpRSlGgVTQQBaBZHQLlcczmOlwd1fZQoaAZoCWgPQwjv5xTkZ3xvQJSGlFKUaBVNFwFoFkdAuVyEFmnO0XV9lChoBmgJaA9DCLggW5Yv2XFAlIaUUpRoFUvwaBZHQLlciRT0g8t1fZQoaAZoCWgPQwgnbD8Z4xlxQJSGlFKUaBVNMwFoFkdAuVy38Nx2jnV9lChoBmgJaA9DCL3IBPxa5XJAlIaUUpRoFUvhaBZHQLldQO6d1+11fZQoaAZoCWgPQwj7P4f5MqlwQJSGlFKUaBVL+mgWR0C5XUPZZjhDdX2UKGgGaAloD0MIT135LE/ocUCUhpRSlGgVTSQBaBZHQLldXqLjxTd1fZQoaAZoCWgPQwi0rtFy4GRyQJSGlFKUaBVNVgFoFkdAuV1y8SPEKnV9lChoBmgJaA9DCOZ0WUysEnJAlIaUUpRoFU1UAWgWR0C5XYriuMdcdX2UKGgGaAloD0MIumjIeNTIcUCUhpRSlGgVS/5oFkdAuV3OruIAO3V9lChoBmgJaA9DCEbOwp52dHBAlIaUUpRoFUvtaBZHQLld1mCiAUd1fZQoaAZoCWgPQwjZsKayKAdxQJSGlFKUaBVNIAFoFkdAuV4bIhhYvHV9lChoBmgJaA9DCPVLxFvnhnNAlIaUUpRoFU0mAWgWR0C5XkxQWN3odX2UKGgGaAloD0MIqRJlbyk3cUCUhpRSlGgVS95oFkdAuV5L5Ec81XV9lChoBmgJaA9DCKZgjbMpIXFAlIaUUpRoFU0IAWgWR0C5XluH31zydX2UKGgGaAloD0MIAd2XM9tMckCUhpRSlGgVS/RoFkdAuV5gnUlRg3V9lChoBmgJaA9DCOpYpfTM1m9AlIaUUpRoFUv8aBZHQLlfWy+YdAB1fZQoaAZoCWgPQwhYPPVIgxleQJSGlFKUaBVN6ANoFkdAuV9dgF5fMXV9lChoBmgJaA9DCMHEH0Wd3nFAlIaUUpRoFU1BAWgWR0C5X2A9mpVCdX2UKGgGaAloD0MIvsEXJtMncECUhpRSlGgVS/9oFkdAuV9l74SHunV9lChoBmgJaA9DCAlP6PXnV3BAlIaUUpRoFUv2aBZHQLlfb+UQkHF1fZQoaAZoCWgPQwh3Sgfr/7hwQJSGlFKUaBVL6WgWR0C5X4MqFyq/dX2UKGgGaAloD0MIMEllijnOcECUhpRSlGgVTYMBaBZHQLlfrhbW3Bp1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-ts1M/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46cfd8a94dadfd8ca528c1c3628b307e99dc0e9c797ee303cacbaee8aa27fc38
3
+ size 87929
ppo-LunarLander-v2-ts1M/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac1cd43185ea5cf9ff96b86711b19a5d77f0904015e38dd7d1be24459b3607c6
3
+ size 43201
ppo-LunarLander-v2-ts1M/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-ts1M/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (203 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 278.6523560756656, "std_reward": 28.361914408874917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-09T10:34:50.411569"}