Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1917.75 +/- 238.33
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81e4c7963a6989bf29e4477745bc9e5bfc7a1d1c18c1d95d2abc440256dbb0d7
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5317938b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5317938c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5317938ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5317938d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5317938dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5317938e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5317938ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5317938f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f531793e040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f531793e0d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f531793e160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f531793e1f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f531793a780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678533171065756189,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAE1VtT8tqYS/4yylPmAdxz5c9RjA+oxGv26lrL7Jz4K/m2MUPwPzD7/NFfw/RkEHwMBCPb9GFrE/T/brvoqaCj7ynX++P+epPzET8r6LxUU+h3uxvdJ5jj8kqoK/iZ+xv+zPcj/bOQA/E84JP1/clL9rrms/OgeDvx+xqT58OYQ/pUR7v+9UHD8McVU9zkT6vluRhr5s41w9JxzGP+mAqj6FFLq/tM0ewLJHt75eXRq/L56lvXsxtL9+rJe+FF4kP2cDQL+dDKM9d3KavvjeFMDsz3I/fYz/vxPOCT9f3JS/+ZwOP8f5b7+SIMY+R1XPPn0x774Qq+C/t90rPWP+q799qSY/UKgUvjp0NL7w1SPAH8+dvu4/VD/4III+xSTLPtJd6T7pb9g/TowKP0p1hT6m2H6+n7oIv2YCAr4S/QxAuPOGv9s5AD8Kye2/X9yUv+B+Vz9GDhO+wcUbP70kvT5S58M/fHdCP3BHdD+2Br0+WrjRPusLj742r4o/Or0EwPtUVL8Pr7I/YaT2vzU+hr7ef3O+cw7aP+BD9z4tk6K/svZXvgsHgj9oRCQ78nAcPrjzhr/bOQA/CsntvwQgXD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADUGoy1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/5kiPAAAAAC8iPu/AAAAAE1szL0AAAAAN7jcPwAAAAB9wxw9AAAAAF8P/z8AAAAAT4zJvAAAAACCdgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3ipTNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLoKMD0AAAAAIwjhvwAAAADJsr89AAAAAETn+z8AAAAAOav/PQAAAAADc/c/AAAAAJkVHz0AAAAAXgbpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJfInrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDBwIo9AAAAAMwj4r8AAAAACA//vQAAAACoads/AAAAAADemr0AAAAAWQn/PwAAAAB2LXa9AAAAACQK+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUFPg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHyLovQAAAABKTOe/AAAAAAVjn7sAAAAAkc/0PwAAAAAa69I9AAAAAHJf3T8AAAAA+LHnvQAAAABf2tm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJuHfAJswcqMAWyUTegDjAF0lEdArIfoqy4WlHV9lChoBkdAoH5xuhsZYWgHTegDaAhHQKyNw/8EV351fZQoaAZHQIpexQFcIJJoB03oA2gIR0CskQYywfQsdX2UKGgGR0CfiGW1MM7VaAdN6ANoCEdArJIY+8oQWnV9lChoBkdAlY6aBd2Pk2gHTegDaAhHQKyUjZRKpUB1fZQoaAZHQJ0MDYdyT6loB03oA2gIR0CsnVjeTFERdX2UKGgGR0CdpMcf/3nIaAdN6ANoCEdArKMOU8mrsHV9lChoBkdAnjHLofSx7mgHTegDaAhHQKyk+yN4qw11fZQoaAZHQIxo2+fywwFoB03oA2gIR0CsqTuk1uR+dX2UKGgGR0Ce8ju+h4+saAdN6ANoCEdArK9m7cwg1XV9lChoBkdAoANpCOWBz2gHTegDaAhHQKyyixPfsNV1fZQoaAZHQKAn3gF5fMRoB03oA2gIR0Css5yGi5/cdX2UKGgGR0CeE9+tKZlWaAdN6ANoCEdArLX0q6OHWXV9lChoBkdAmP/z3M6ikGgHTegDaAhHQKy7ypMHryF1fZQoaAZHQJBzir8zhxZoB03oA2gIR0Csv1vS+g14dX2UKGgGR0Cfoq5EMLF5aAdN6ANoCEdArMEAUFjd6HV9lChoBkdAltkowM6RyWgHTegDaAhHQKzEyfwqiGp1fZQoaAZHQJbvXbCaZx9oB03oA2gIR0CszG3Vsk6cdX2UKGgGR0CaKFjR2KVIaAdN6ANoCEdArM+KwwCbMHV9lChoBkdAmy6mplz2e2gHTegDaAhHQKzQlzRQaaV1fZQoaAZHQJu4lQKrq+toB03oA2gIR0Cs0vXnIQvpdX2UKGgGR0Cdb8bvgFX8aAdN6ANoCEdArNitie/Ya3V9lChoBkdAoIGz4593KWgHTegDaAhHQKzb3y+6Ae91fZQoaAZHQJ9uQOiFj/doB03oA2gIR0Cs3QCblRxcdX2UKGgGR0Cc52frKNhmaAdN6ANoCEdArOBnh/Aj6nV9lChoBkdAnSjT4YaYNWgHTegDaAhHQKzpfU70Wdp1fZQoaAZHQJ88WZTho/RoB03oA2gIR0Cs7HMZpBX0dX2UKGgGR0CgZqSFPBSDaAdN6ANoCEdArO2LNW2gF3V9lChoBkdAn1Uj0163RWgHTegDaAhHQKzv6vMbFS91fZQoaAZHQJvQd13dKuloB03oA2gIR0Cs98pW3jMndX2UKGgGR0CTCs1s+FDfaAdN6ANoCEdArPy/Sv1UVHV9lChoBkdAnem4VZcLSmgHTegDaAhHQKz+LECNjsl1fZQoaAZHQJ4vgNjLB9FoB03oA2gIR0CtAcft6X0HdX2UKGgGR0Cat0jKgZjyaAdN6ANoCEdArQom45Lh73V9lChoBkdAmrpqasp5NWgHTegDaAhHQK0NVNCZ4Od1fZQoaAZHQJr3Oh6By0doB03oA2gIR0CtDm6Yu01JdX2UKGgGR0CCs6IVuaWpaAdN6ANoCEdArRDsXrMTvnV9lChoBkdAmiWYoy9EkWgHTegDaAhHQK0WmoE0SAZ1fZQoaAZHQJwEShVU+9toB03oA2gIR0CtGdkC3gDSdX2UKGgGR0CaeO31BdD6aAdN6ANoCEdArRr+scQyynV9lChoBkdAoEJqX+l0o2gHTegDaAhHQK0d0BxPwd91fZQoaAZHQJ0OfRgJC0FoB03oA2gIR0CtJwqx9oexdX2UKGgGR0CdkA1lGwzMaAdN6ANoCEdArSqn7aZhKHV9lChoBkdAjk7iONo8IWgHTegDaAhHQK0rv+vQnhN1fZQoaAZHQJyyy2mYSg5oB03oA2gIR0CtLiUgr6LwdX2UKGgGR0CdV1zBhx5taAdN6ANoCEdArTO7bzshPnV9lChoBkdAnozkXHim22gHTegDaAhHQK02wq2Bret1fZQoaAZHQJrryPHT7VJoB03oA2gIR0CtN9ZKnNxEdX2UKGgGR0CYPTyt3fQ8aAdN6ANoCEdArTogJu2qk3V9lChoBkdAnUGulGgBcWgHTegDaAhHQK1BVYFJQLx1fZQoaAZHQJsV/wZwXIloB03oA2gIR0CtRn92ovSMdX2UKGgGR0CRS23EQ5FPaAdN6ANoCEdArUgUJ0GNaXV9lChoBkdAnRJQeq7yx2gHTegDaAhHQK1KdtdiUgV1fZQoaAZHQJwrPp8neBRoB03oA2gIR0CtUigEdNnHdX2UKGgGR0CfXMiMHbAUaAdN6ANoCEdArVc4vg3tKXV9lChoBkdAoBN5ISUTtmgHTegDaAhHQK1YWUPhAGB1fZQoaAZHQJ+BMAeaKDVoB03oA2gIR0CtWr/OUt7KdX2UKGgGR0Ca9WFpPAO8aAdN6ANoCEdArWMSPIXCTHV9lChoBkdAnfaVs+FDfGgHTegDaAhHQK1n4KRdQfp1fZQoaAZHQJzsa4G2TgVoB03oA2gIR0CtaO/wy6+WdX2UKGgGR0CfpvKkEcKgaAdN6ANoCEdArWtL1K5CnnV9lChoBkdAndOEiY9gW2gHTegDaAhHQK1w6xbB42V1fZQoaAZHQJ+EcEA5q/NoB03oA2gIR0Ctc/6i0v4/dX2UKGgGR0Ce3RbxVhkRaAdN6ANoCEdArXURLsa86HV9lChoBkdAl6zBRuTA32gHTegDaAhHQK13fE/jbSJ1fZQoaAZHQJ6mJtHhCMRoB03oA2gIR0Ctfk3dj5KwdX2UKGgGR0CfLNLU1AJLaAdN6ANoCEdArYNLlT3qRnV9lChoBkdAm4ruoDPnjmgHTegDaAhHQK2FDbt7a7F1fZQoaAZHQJ/alQFcIJJoB03oA2gIR0CtiC5LRKHxdX2UKGgGR0Cd7HJo0ygxaAdN6ANoCEdArY3fCsOoYXV9lChoBkdAm7VIUFjd6GgHTegDaAhHQK2Q8OXE61d1fZQoaAZHQJtVsqqfe1toB03oA2gIR0CtkhUnG828dX2UKGgGR0CcfdkqMFUyaAdN6ANoCEdArZSnfO2RaHV9lChoBkdAl/2dPYWcjWgHTegDaAhHQK2aabsF+ux1fZQoaAZHQJx3/+BH09RoB03oA2gIR0Ctnt13t8eCdX2UKGgGR0CeiLD0lJHzaAdN6ANoCEdAraB8N4JNTXV9lChoBkdAl4cII4VARmgHTegDaAhHQK2kZgzguRN1fZQoaAZHQJSxh/9YOlRoB03oA2gIR0CtrO9fkWAPdX2UKGgGR0CUSg6eGwiaaAdN6ANoCEdArbGzKoybhHV9lChoBkdAlgv83Mpw0mgHTegDaAhHQK2yvTAnDzl1fZQoaAZHQJfNto+Ofd1oB03oA2gIR0CttP+TV2A5dX2UKGgGR0CWcPvPTodNaAdN6ANoCEdArbqw4ACGOHV9lChoBkdAmvWdA5aNdmgHTegDaAhHQK2/UYZ2pyZ1fZQoaAZHQJ21YmReTmpoB03oA2gIR0CtwQui35N5dX2UKGgGR0CdLadP+GXYaAdN6ANoCEdArcTv2kBS1nV9lChoBkdAnim2jj7yhGgHTegDaAhHQK3K21Vo6CF1fZQoaAZHQJt9pJz1bq1oB03oA2gIR0Ctzf0I9kjHdX2UKGgGR0CViZ4fwI+oaAdN6ANoCEdArc86vgWJrXV9lChoBkdAnH2+HnEET2gHTegDaAhHQK3RpnIQvpR1fZQoaAZHQJ8f+2Dxsl9oB03oA2gIR0Ct119u5z5odX2UKGgGR0CcXkPatcOcaAdN6ANoCEdArdrPjXFtK3V9lChoBkdAn5YHlCCz1WgHTegDaAhHQK3cdDLr5Zd1fZQoaAZHQJzW627Wd3BoB03oA2gIR0Ct4DyjHn2adX2UKGgGR0Cft9Rcu8K5aAdN6ANoCEdArefqy8jAz3V9lChoBkdAla6oNRWLgmgHTegDaAhHQK3rOX3QD3d1fZQoaAZHQJvghO0svqVoB03oA2gIR0Ct7FxwZOzqdX2UKGgGR0B/+kK4QSSNaAdN6ANoCEdAre7D5M10knV9lChoBkdAoE1AHu7YkGgHTegDaAhHQK30d2qT8pF1fZQoaAZHQJvocv6CUX5oB03oA2gIR0Ct95mdZq20dX2UKGgGR0CPpl9UCJXRaAdN6ANoCEdArfiog5imVXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:631a37562fa94f2bd8b9b1d687117787bfb58cb4096269fde6036a7fad3c61bd
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57a9856f28c060f896baf7fc680d42cd7a133028961ff912375e85fd483e8f2d
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5317938b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5317938c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5317938ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5317938d30>", "_build": "<function ActorCriticPolicy._build at 0x7f5317938dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5317938e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5317938ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5317938f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f531793e040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f531793e0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f531793e160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f531793e1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f531793a780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678533171065756189, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAE1VtT8tqYS/4yylPmAdxz5c9RjA+oxGv26lrL7Jz4K/m2MUPwPzD7/NFfw/RkEHwMBCPb9GFrE/T/brvoqaCj7ynX++P+epPzET8r6LxUU+h3uxvdJ5jj8kqoK/iZ+xv+zPcj/bOQA/E84JP1/clL9rrms/OgeDvx+xqT58OYQ/pUR7v+9UHD8McVU9zkT6vluRhr5s41w9JxzGP+mAqj6FFLq/tM0ewLJHt75eXRq/L56lvXsxtL9+rJe+FF4kP2cDQL+dDKM9d3KavvjeFMDsz3I/fYz/vxPOCT9f3JS/+ZwOP8f5b7+SIMY+R1XPPn0x774Qq+C/t90rPWP+q799qSY/UKgUvjp0NL7w1SPAH8+dvu4/VD/4III+xSTLPtJd6T7pb9g/TowKP0p1hT6m2H6+n7oIv2YCAr4S/QxAuPOGv9s5AD8Kye2/X9yUv+B+Vz9GDhO+wcUbP70kvT5S58M/fHdCP3BHdD+2Br0+WrjRPusLj742r4o/Or0EwPtUVL8Pr7I/YaT2vzU+hr7ef3O+cw7aP+BD9z4tk6K/svZXvgsHgj9oRCQ78nAcPrjzhr/bOQA/CsntvwQgXD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADUGoy1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/5kiPAAAAAC8iPu/AAAAAE1szL0AAAAAN7jcPwAAAAB9wxw9AAAAAF8P/z8AAAAAT4zJvAAAAACCdgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3ipTNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLoKMD0AAAAAIwjhvwAAAADJsr89AAAAAETn+z8AAAAAOav/PQAAAAADc/c/AAAAAJkVHz0AAAAAXgbpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJfInrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDBwIo9AAAAAMwj4r8AAAAACA//vQAAAACoads/AAAAAADemr0AAAAAWQn/PwAAAAB2LXa9AAAAACQK+L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUFPg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHyLovQAAAABKTOe/AAAAAAVjn7sAAAAAkc/0PwAAAAAa69I9AAAAAHJf3T8AAAAA+LHnvQAAAABf2tm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJuHfAJswcqMAWyUTegDjAF0lEdArIfoqy4WlHV9lChoBkdAoH5xuhsZYWgHTegDaAhHQKyNw/8EV351fZQoaAZHQIpexQFcIJJoB03oA2gIR0CskQYywfQsdX2UKGgGR0CfiGW1MM7VaAdN6ANoCEdArJIY+8oQWnV9lChoBkdAlY6aBd2Pk2gHTegDaAhHQKyUjZRKpUB1fZQoaAZHQJ0MDYdyT6loB03oA2gIR0CsnVjeTFERdX2UKGgGR0CdpMcf/3nIaAdN6ANoCEdArKMOU8mrsHV9lChoBkdAnjHLofSx7mgHTegDaAhHQKyk+yN4qw11fZQoaAZHQIxo2+fywwFoB03oA2gIR0CsqTuk1uR+dX2UKGgGR0Ce8ju+h4+saAdN6ANoCEdArK9m7cwg1XV9lChoBkdAoANpCOWBz2gHTegDaAhHQKyyixPfsNV1fZQoaAZHQKAn3gF5fMRoB03oA2gIR0Css5yGi5/cdX2UKGgGR0CeE9+tKZlWaAdN6ANoCEdArLX0q6OHWXV9lChoBkdAmP/z3M6ikGgHTegDaAhHQKy7ypMHryF1fZQoaAZHQJBzir8zhxZoB03oA2gIR0Csv1vS+g14dX2UKGgGR0Cfoq5EMLF5aAdN6ANoCEdArMEAUFjd6HV9lChoBkdAltkowM6RyWgHTegDaAhHQKzEyfwqiGp1fZQoaAZHQJbvXbCaZx9oB03oA2gIR0CszG3Vsk6cdX2UKGgGR0CaKFjR2KVIaAdN6ANoCEdArM+KwwCbMHV9lChoBkdAmy6mplz2e2gHTegDaAhHQKzQlzRQaaV1fZQoaAZHQJu4lQKrq+toB03oA2gIR0Cs0vXnIQvpdX2UKGgGR0Cdb8bvgFX8aAdN6ANoCEdArNitie/Ya3V9lChoBkdAoIGz4593KWgHTegDaAhHQKzb3y+6Ae91fZQoaAZHQJ9uQOiFj/doB03oA2gIR0Cs3QCblRxcdX2UKGgGR0Cc52frKNhmaAdN6ANoCEdArOBnh/Aj6nV9lChoBkdAnSjT4YaYNWgHTegDaAhHQKzpfU70Wdp1fZQoaAZHQJ88WZTho/RoB03oA2gIR0Cs7HMZpBX0dX2UKGgGR0CgZqSFPBSDaAdN6ANoCEdArO2LNW2gF3V9lChoBkdAn1Uj0163RWgHTegDaAhHQKzv6vMbFS91fZQoaAZHQJvQd13dKuloB03oA2gIR0Cs98pW3jMndX2UKGgGR0CTCs1s+FDfaAdN6ANoCEdArPy/Sv1UVHV9lChoBkdAnem4VZcLSmgHTegDaAhHQKz+LECNjsl1fZQoaAZHQJ4vgNjLB9FoB03oA2gIR0CtAcft6X0HdX2UKGgGR0Cat0jKgZjyaAdN6ANoCEdArQom45Lh73V9lChoBkdAmrpqasp5NWgHTegDaAhHQK0NVNCZ4Od1fZQoaAZHQJr3Oh6By0doB03oA2gIR0CtDm6Yu01JdX2UKGgGR0CCs6IVuaWpaAdN6ANoCEdArRDsXrMTvnV9lChoBkdAmiWYoy9EkWgHTegDaAhHQK0WmoE0SAZ1fZQoaAZHQJwEShVU+9toB03oA2gIR0CtGdkC3gDSdX2UKGgGR0CaeO31BdD6aAdN6ANoCEdArRr+scQyynV9lChoBkdAoEJqX+l0o2gHTegDaAhHQK0d0BxPwd91fZQoaAZHQJ0OfRgJC0FoB03oA2gIR0CtJwqx9oexdX2UKGgGR0CdkA1lGwzMaAdN6ANoCEdArSqn7aZhKHV9lChoBkdAjk7iONo8IWgHTegDaAhHQK0rv+vQnhN1fZQoaAZHQJyyy2mYSg5oB03oA2gIR0CtLiUgr6LwdX2UKGgGR0CdV1zBhx5taAdN6ANoCEdArTO7bzshPnV9lChoBkdAnozkXHim22gHTegDaAhHQK02wq2Bret1fZQoaAZHQJrryPHT7VJoB03oA2gIR0CtN9ZKnNxEdX2UKGgGR0CYPTyt3fQ8aAdN6ANoCEdArTogJu2qk3V9lChoBkdAnUGulGgBcWgHTegDaAhHQK1BVYFJQLx1fZQoaAZHQJsV/wZwXIloB03oA2gIR0CtRn92ovSMdX2UKGgGR0CRS23EQ5FPaAdN6ANoCEdArUgUJ0GNaXV9lChoBkdAnRJQeq7yx2gHTegDaAhHQK1KdtdiUgV1fZQoaAZHQJwrPp8neBRoB03oA2gIR0CtUigEdNnHdX2UKGgGR0CfXMiMHbAUaAdN6ANoCEdArVc4vg3tKXV9lChoBkdAoBN5ISUTtmgHTegDaAhHQK1YWUPhAGB1fZQoaAZHQJ+BMAeaKDVoB03oA2gIR0CtWr/OUt7KdX2UKGgGR0Ca9WFpPAO8aAdN6ANoCEdArWMSPIXCTHV9lChoBkdAnfaVs+FDfGgHTegDaAhHQK1n4KRdQfp1fZQoaAZHQJzsa4G2TgVoB03oA2gIR0CtaO/wy6+WdX2UKGgGR0CfpvKkEcKgaAdN6ANoCEdArWtL1K5CnnV9lChoBkdAndOEiY9gW2gHTegDaAhHQK1w6xbB42V1fZQoaAZHQJ+EcEA5q/NoB03oA2gIR0Ctc/6i0v4/dX2UKGgGR0Ce3RbxVhkRaAdN6ANoCEdArXURLsa86HV9lChoBkdAl6zBRuTA32gHTegDaAhHQK13fE/jbSJ1fZQoaAZHQJ6mJtHhCMRoB03oA2gIR0Ctfk3dj5KwdX2UKGgGR0CfLNLU1AJLaAdN6ANoCEdArYNLlT3qRnV9lChoBkdAm4ruoDPnjmgHTegDaAhHQK2FDbt7a7F1fZQoaAZHQJ/alQFcIJJoB03oA2gIR0CtiC5LRKHxdX2UKGgGR0Cd7HJo0ygxaAdN6ANoCEdArY3fCsOoYXV9lChoBkdAm7VIUFjd6GgHTegDaAhHQK2Q8OXE61d1fZQoaAZHQJtVsqqfe1toB03oA2gIR0CtkhUnG828dX2UKGgGR0CcfdkqMFUyaAdN6ANoCEdArZSnfO2RaHV9lChoBkdAl/2dPYWcjWgHTegDaAhHQK2aabsF+ux1fZQoaAZHQJx3/+BH09RoB03oA2gIR0Ctnt13t8eCdX2UKGgGR0CeiLD0lJHzaAdN6ANoCEdAraB8N4JNTXV9lChoBkdAl4cII4VARmgHTegDaAhHQK2kZgzguRN1fZQoaAZHQJSxh/9YOlRoB03oA2gIR0CtrO9fkWAPdX2UKGgGR0CUSg6eGwiaaAdN6ANoCEdArbGzKoybhHV9lChoBkdAlgv83Mpw0mgHTegDaAhHQK2yvTAnDzl1fZQoaAZHQJfNto+Ofd1oB03oA2gIR0CttP+TV2A5dX2UKGgGR0CWcPvPTodNaAdN6ANoCEdArbqw4ACGOHV9lChoBkdAmvWdA5aNdmgHTegDaAhHQK2/UYZ2pyZ1fZQoaAZHQJ21YmReTmpoB03oA2gIR0CtwQui35N5dX2UKGgGR0CdLadP+GXYaAdN6ANoCEdArcTv2kBS1nV9lChoBkdAnim2jj7yhGgHTegDaAhHQK3K21Vo6CF1fZQoaAZHQJt9pJz1bq1oB03oA2gIR0Ctzf0I9kjHdX2UKGgGR0CViZ4fwI+oaAdN6ANoCEdArc86vgWJrXV9lChoBkdAnH2+HnEET2gHTegDaAhHQK3RpnIQvpR1fZQoaAZHQJ8f+2Dxsl9oB03oA2gIR0Ct119u5z5odX2UKGgGR0CcXkPatcOcaAdN6ANoCEdArdrPjXFtK3V9lChoBkdAn5YHlCCz1WgHTegDaAhHQK3cdDLr5Zd1fZQoaAZHQJzW627Wd3BoB03oA2gIR0Ct4DyjHn2adX2UKGgGR0Cft9Rcu8K5aAdN6ANoCEdArefqy8jAz3V9lChoBkdAla6oNRWLgmgHTegDaAhHQK3rOX3QD3d1fZQoaAZHQJvghO0svqVoB03oA2gIR0Ct7FxwZOzqdX2UKGgGR0B/+kK4QSSNaAdN6ANoCEdAre7D5M10knV9lChoBkdAoE1AHu7YkGgHTegDaAhHQK30d2qT8pF1fZQoaAZHQJvocv6CUX5oB03oA2gIR0Ct95mdZq20dX2UKGgGR0CPpl9UCJXRaAdN6ANoCEdArfiog5imVXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07770721ea3166488161dedbf69b6c158a4ab1439e3c4fd41b2a13568ee6bdbd
|
3 |
+
size 1122473
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1917.750384263741, "std_reward": 238.3327606441039, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-11T12:18:31.842905"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0b724fde76f8280dd210e1aabf64425ead5c71be9dfd5146eaeae3da9b77e12
|
3 |
+
size 2136
|