Update README.md
Browse files
README.md
CHANGED
@@ -122,6 +122,58 @@ images = ip_model.generate(
|
|
122 |
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
|
123 |
)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
```
|
126 |
|
127 |
### IP-Adapter-FaceID-SDXL
|
@@ -188,6 +240,7 @@ images = ip_model.generate(
|
|
188 |
|
189 |
```
|
190 |
|
|
|
191 |
### IP-Adapter-FaceID-Plus
|
192 |
|
193 |
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding and face image:
|
|
|
122 |
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
|
123 |
)
|
124 |
|
125 |
+
```
|
126 |
+
|
127 |
+
you can also use a normal IP-Adapter and a normal LoRA to load model:
|
128 |
+
|
129 |
+
```python
|
130 |
+
import torch
|
131 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
132 |
+
from PIL import Image
|
133 |
+
|
134 |
+
from ip_adapter.ip_adapter_faceid_separate import IPAdapterFaceID
|
135 |
+
|
136 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
137 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
138 |
+
ip_ckpt = "ip-adapter-faceid_sd15.bin"
|
139 |
+
lora_ckpt = "ip-adapter-faceid_sd15_lora.safetensors"
|
140 |
+
device = "cuda"
|
141 |
+
|
142 |
+
noise_scheduler = DDIMScheduler(
|
143 |
+
num_train_timesteps=1000,
|
144 |
+
beta_start=0.00085,
|
145 |
+
beta_end=0.012,
|
146 |
+
beta_schedule="scaled_linear",
|
147 |
+
clip_sample=False,
|
148 |
+
set_alpha_to_one=False,
|
149 |
+
steps_offset=1,
|
150 |
+
)
|
151 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
152 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
153 |
+
base_model_path,
|
154 |
+
torch_dtype=torch.float16,
|
155 |
+
scheduler=noise_scheduler,
|
156 |
+
vae=vae,
|
157 |
+
feature_extractor=None,
|
158 |
+
safety_checker=None
|
159 |
+
)
|
160 |
+
|
161 |
+
# load lora and fuse
|
162 |
+
pipe.load_lora_weights(lora_ckpt)
|
163 |
+
pipe.fuse_lora()
|
164 |
+
|
165 |
+
# load ip-adapter
|
166 |
+
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
|
167 |
+
|
168 |
+
# generate image
|
169 |
+
prompt = "photo of a woman in red dress in a garden"
|
170 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality, blurry"
|
171 |
+
|
172 |
+
images = ip_model.generate(
|
173 |
+
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, num_samples=4, width=512, height=768, num_inference_steps=30, seed=2023
|
174 |
+
)
|
175 |
+
|
176 |
+
|
177 |
```
|
178 |
|
179 |
### IP-Adapter-FaceID-SDXL
|
|
|
240 |
|
241 |
```
|
242 |
|
243 |
+
|
244 |
### IP-Adapter-FaceID-Plus
|
245 |
|
246 |
Firstly, you should use [insightface](https://github.com/deepinsight/insightface) to extract face ID embedding and face image:
|