|
genes <- c('PTEN', 'NUDT15', 'SNCA', 'CYP2C9', 'GCK', 'ASPA', 'CCR5', 'CXCR4') |
|
stab.assay <- c(1, 1, 2, 2, 2, 1, 1, 1) |
|
task.dic <- list("PTEN"=c("score.1"="stability", "score.2"="enzyme.activity"), |
|
"NUDT15"=c("score.1"="stability", "score.2"="enzyme.activity"), |
|
"VKORC1"=c("score.1"="enzyme.activity", "score.2"="stability"), |
|
"CCR5"=c("score.1"="stability", "score.2"="binding Ab2D7", "score.3"="binding HIV-1"), |
|
"CXCR4"=c("score.1"="stability", "score.2"="binding CXCL12", "score.3"="binding Ab12G5"), |
|
"SNCA"=c("score.1"="enzyme.activity", "score.2"="stability"), |
|
"CYP2C9"=c("score.1"="enzyme.activity", "score.2"="stability"), |
|
"GCK"=c("score.1"="enzyme.activity", "score.2"="stability"), |
|
"ASPA"=c("score.1"="stability", "score.2"="enzyme.activity") |
|
) |
|
result <- NULL |
|
sp.stats <- NULL |
|
pr.stats <- NULL |
|
all.plots <- list() |
|
k = 1 |
|
for (i in 1:length(genes)) { |
|
assay <- read.csv(paste0('../data.files/', genes[i], '/ALL.annotated.csv')) |
|
|
|
stab.score.columns <- paste0('score.', stab.assay[i]) |
|
stab.corr <- abs(cor.test(assay$FoldXddG, assay[,stab.score.columns])$estimate) |
|
other.score.columns <- colnames(assay)[startsWith(colnames(assay), 'score')] |
|
other.score.columns <- other.score.columns[!other.score.columns %in% stab.score.columns] |
|
other.corr <- NULL |
|
for (c in other.score.columns) { |
|
other.corr <- c(other.corr, abs(cor.test(assay$RosettaddG, assay[,c])$estimate)) |
|
} |
|
other.corr <- mean(other.corr, na.rm = T) |
|
result <- rbind(result, |
|
data.frame(HGNC=genes[i], |
|
stab.corr=stab.corr, |
|
other.corr=other.corr)) |
|
if (genes[i] == 'ASPA') { |
|
assay[,other.score.columns] <- -assay[,other.score.columns] |
|
x.pos <- 'right' |
|
y.pos <- 'bottom' |
|
} else { |
|
x.pos <- 'left' |
|
y.pos <- 'top' |
|
} |
|
|
|
for (c in other.score.columns) { |
|
sp.stats[k] <- cor.test(assay[,stab.score.columns], |
|
assay[,c], method = 'spearman')$estimate |
|
pr.stats[k] <- cor.test(assay[,stab.score.columns], |
|
assay[,c], method = 'pearson')$estimate |
|
p <- ggplot(assay, aes_string(x=stab.score.columns, y=c)) + |
|
geom_point(alpha=0.2, color='grey') + |
|
geom_density_2d(color='gray1') + |
|
stat_smooth(method = "lm", formula = y~x, color='blue') + |
|
ggpp::geom_text_npc(data=data.frame(x=x.pos, y=y.pos, |
|
label=paste0("Pearson r=", signif(pr.stats[k], digits = 2), |
|
"\nSpearman rho=", signif(sp.stats[k], digits = 2))), |
|
aes(npcx=x, npcy=y, label=label), |
|
col='black') + |
|
ggtitle(genes[i]) + |
|
xlab(task.dic[[genes[i]]][stab.score.columns]) + |
|
ylab(task.dic[[genes[i]]][c]) + |
|
theme_bw() + ggeasy::easy_center_title() |
|
all.plots[[k]] <- p |
|
k <- k + 1 |
|
} |
|
} |
|
|
|
library(patchwork) |
|
p <- (all.plots[[1]] + all.plots[[2]] + all.plots[[3]]) / |
|
(all.plots[[4]] + all.plots[[5]] + all.plots[[6]]) / |
|
(all.plots[[7]] + all.plots[[8]] + all.plots[[9]] + all.plots[[10]] + plot_layout(ncol = 4)) |
|
ggsave('figs/fig.sup.3.pdf', p, height = 10, width = 10) |
|
|
|
|
|
|
|
|