|
import torch |
|
import torch.nn as nn |
|
from transformers import ( |
|
BertPreTrainedModel, |
|
BertModel, |
|
AutoModelForSequenceClassification, |
|
BertConfig, |
|
) |
|
from transformers.modeling_outputs import SequenceClassifierOutput |
|
|
|
|
|
class BertForRelationExtraction(BertPreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = len(config.label2id) |
|
self.config = config |
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.dropout = nn.Dropout( |
|
config.classifier_dropout |
|
if config.classifier_dropout is not None |
|
else config.hidden_dropout_prob |
|
) |
|
self.layer_norm = nn.LayerNorm(2 * config.hidden_size) |
|
self.classifier = nn.Linear(2 * config.hidden_size, self.num_labels) |
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
|
|
e1_start = torch.where(input_ids == self.config.e1_start_token_id) |
|
e2_start = torch.where(input_ids == self.config.e2_start_token_id) |
|
|
|
e1_hidden_states = sequence_output[e1_start[0], e1_start[1]] |
|
e2_hidden_states = sequence_output[e2_start[0], e2_start[1]] |
|
|
|
h = torch.cat((e1_hidden_states, e2_hidden_states), dim=-1) |
|
logits = self.classifier(self.layer_norm(h)) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|