gyr66 commited on
Commit
611ab5a
β€’
1 Parent(s): 9fe363e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - privacy_detection
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: RoBERTa-finetuned-privacy-detection
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: privacy_detection
20
+ type: privacy_detection
21
+ config: privacy_detection
22
+ split: train
23
+ args: privacy_detection
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.6038216560509554
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.716012084592145
31
+ - name: F1
32
+ type: f1
33
+ value: 0.655148583275743
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9050795916467558
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # RoBERTa-finetuned-privacy-detection
43
+
44
+ This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on the privacy_detection dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.3400
47
+ - Precision: 0.6038
48
+ - Recall: 0.7160
49
+ - F1: 0.6551
50
+ - Accuracy: 0.9051
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 56
71
+ - eval_batch_size: 56
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 10
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 36 | 0.8623 | 0.1797 | 0.1979 | 0.1884 | 0.7756 |
82
+ | No log | 2.0 | 72 | 0.4946 | 0.4109 | 0.5317 | 0.4636 | 0.8557 |
83
+ | No log | 3.0 | 108 | 0.3918 | 0.4847 | 0.6073 | 0.5391 | 0.8824 |
84
+ | No log | 4.0 | 144 | 0.3618 | 0.5390 | 0.6631 | 0.5946 | 0.8915 |
85
+ | No log | 5.0 | 180 | 0.3495 | 0.5604 | 0.6883 | 0.6178 | 0.8981 |
86
+ | No log | 6.0 | 216 | 0.3396 | 0.5836 | 0.6966 | 0.6351 | 0.9020 |
87
+ | No log | 7.0 | 252 | 0.3458 | 0.5900 | 0.7047 | 0.6423 | 0.9018 |
88
+ | No log | 8.0 | 288 | 0.3412 | 0.5989 | 0.7090 | 0.6493 | 0.9047 |
89
+ | No log | 9.0 | 324 | 0.3425 | 0.5955 | 0.7145 | 0.6496 | 0.9042 |
90
+ | No log | 10.0 | 360 | 0.3400 | 0.6038 | 0.7160 | 0.6551 | 0.9051 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.27.3
96
+ - Pytorch 2.0.1+cu117
97
+ - Datasets 2.14.5
98
+ - Tokenizers 0.13.2