update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- privacy_detection
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: RoBERTa-finetuned-privacy-detection
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: privacy_detection
|
20 |
+
type: privacy_detection
|
21 |
+
config: privacy_detection
|
22 |
+
split: train
|
23 |
+
args: privacy_detection
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.6038216560509554
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.716012084592145
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.655148583275743
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9050795916467558
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# RoBERTa-finetuned-privacy-detection
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on the privacy_detection dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.3400
|
47 |
+
- Precision: 0.6038
|
48 |
+
- Recall: 0.7160
|
49 |
+
- F1: 0.6551
|
50 |
+
- Accuracy: 0.9051
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 56
|
71 |
+
- eval_batch_size: 56
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 10
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 36 | 0.8623 | 0.1797 | 0.1979 | 0.1884 | 0.7756 |
|
82 |
+
| No log | 2.0 | 72 | 0.4946 | 0.4109 | 0.5317 | 0.4636 | 0.8557 |
|
83 |
+
| No log | 3.0 | 108 | 0.3918 | 0.4847 | 0.6073 | 0.5391 | 0.8824 |
|
84 |
+
| No log | 4.0 | 144 | 0.3618 | 0.5390 | 0.6631 | 0.5946 | 0.8915 |
|
85 |
+
| No log | 5.0 | 180 | 0.3495 | 0.5604 | 0.6883 | 0.6178 | 0.8981 |
|
86 |
+
| No log | 6.0 | 216 | 0.3396 | 0.5836 | 0.6966 | 0.6351 | 0.9020 |
|
87 |
+
| No log | 7.0 | 252 | 0.3458 | 0.5900 | 0.7047 | 0.6423 | 0.9018 |
|
88 |
+
| No log | 8.0 | 288 | 0.3412 | 0.5989 | 0.7090 | 0.6493 | 0.9047 |
|
89 |
+
| No log | 9.0 | 324 | 0.3425 | 0.5955 | 0.7145 | 0.6496 | 0.9042 |
|
90 |
+
| No log | 10.0 | 360 | 0.3400 | 0.6038 | 0.7160 | 0.6551 | 0.9051 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.27.3
|
96 |
+
- Pytorch 2.0.1+cu117
|
97 |
+
- Datasets 2.14.5
|
98 |
+
- Tokenizers 0.13.2
|