Add model
Browse files- model_index.json +32 -0
- pipeline.py +977 -0
- processor/merges.txt +0 -0
- processor/preprocessor_config.json +45 -0
- processor/special_tokens_map.json +30 -0
- processor/tokenizer.json +0 -0
- processor/tokenizer_config.json +31 -0
- processor/vocab.json +0 -0
- scheduler/scheduler_config.json +21 -0
- text_encoder/config.json +25 -0
- text_encoder/model.safetensors +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +30 -0
- tokenizer/tokenizer.json +0 -0
- tokenizer/tokenizer_config.json +30 -0
- tokenizer/vocab.json +0 -0
- unet/config.json +67 -0
- unet/diffusion_pytorch_model.safetensors +3 -0
- unet_lcm/config.json +68 -0
- unet_lcm/diffusion_pytorch_model.safetensors +3 -0
- vae/config.json +33 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
- vision_encoder/config.json +23 -0
- vision_encoder/model.safetensors +3 -0
model_index.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": ["pipeline", "StableMaterialsPipeline"],
|
3 |
+
"_diffusers_version": "0.27.2",
|
4 |
+
"processor": [
|
5 |
+
"transformers",
|
6 |
+
"CLIPProcessor"
|
7 |
+
],
|
8 |
+
"scheduler": [
|
9 |
+
"diffusers",
|
10 |
+
"DDIMScheduler"
|
11 |
+
],
|
12 |
+
"text_encoder": [
|
13 |
+
"transformers",
|
14 |
+
"CLIPTextModelWithProjection"
|
15 |
+
],
|
16 |
+
"tokenizer": [
|
17 |
+
"transformers",
|
18 |
+
"CLIPTokenizerFast"
|
19 |
+
],
|
20 |
+
"unet": [
|
21 |
+
"diffusers",
|
22 |
+
"UNet2DConditionModel"
|
23 |
+
],
|
24 |
+
"vae": [
|
25 |
+
"diffusers",
|
26 |
+
"AutoencoderKL"
|
27 |
+
],
|
28 |
+
"vision_encoder": [
|
29 |
+
"transformers",
|
30 |
+
"CLIPVisionModelWithProjection"
|
31 |
+
]
|
32 |
+
}
|
pipeline.py
ADDED
@@ -0,0 +1,977 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import inspect
|
3 |
+
from typing import Any, Dict, List, Optional, Union, get_args
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchvision.transforms.functional as TF
|
9 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
10 |
+
from diffusers.loaders import FromSingleFileMixin
|
11 |
+
from diffusers.models.transformers import Transformer2DModel
|
12 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
|
13 |
+
rescale_noise_cfg,
|
14 |
+
retrieve_timesteps,
|
15 |
+
)
|
16 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
17 |
+
from diffusers.utils import (
|
18 |
+
BaseOutput,
|
19 |
+
deprecate,
|
20 |
+
logging,
|
21 |
+
)
|
22 |
+
from diffusers.utils.torch_utils import randn_tensor
|
23 |
+
from PIL import (
|
24 |
+
Image,
|
25 |
+
Jpeg2KImagePlugin,
|
26 |
+
JpegImagePlugin,
|
27 |
+
PngImagePlugin,
|
28 |
+
TiffImagePlugin,
|
29 |
+
)
|
30 |
+
from transformers import (
|
31 |
+
CLIPImageProcessor,
|
32 |
+
CLIPTextModel,
|
33 |
+
CLIPTokenizer,
|
34 |
+
CLIPVisionModel,
|
35 |
+
)
|
36 |
+
|
37 |
+
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
40 |
+
from dataclasses import dataclass
|
41 |
+
|
42 |
+
ImageInput = Union[
|
43 |
+
PipelineImageInput,
|
44 |
+
JpegImagePlugin.JpegImageFile,
|
45 |
+
Jpeg2KImagePlugin.Jpeg2KImageFile,
|
46 |
+
PngImagePlugin.PngImageFile,
|
47 |
+
TiffImagePlugin.TiffImageFile,
|
48 |
+
]
|
49 |
+
|
50 |
+
import math
|
51 |
+
|
52 |
+
|
53 |
+
def postprocess(
|
54 |
+
image: torch.FloatTensor,
|
55 |
+
output_type: str = "pil",
|
56 |
+
):
|
57 |
+
"""
|
58 |
+
Postprocess the image output from tensor to `output_type`.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
image (`torch.FloatTensor`):
|
62 |
+
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
63 |
+
output_type (`str`, *optional*, defaults to `pil`):
|
64 |
+
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
`PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
|
68 |
+
The postprocessed image.
|
69 |
+
"""
|
70 |
+
if not isinstance(image, torch.Tensor):
|
71 |
+
raise ValueError(
|
72 |
+
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
73 |
+
)
|
74 |
+
if output_type not in ["latent", "pt", "np", "pil"]:
|
75 |
+
deprecation_message = (
|
76 |
+
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
77 |
+
"`pil`, `np`, `pt`, `latent`"
|
78 |
+
)
|
79 |
+
deprecate(
|
80 |
+
"Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False
|
81 |
+
)
|
82 |
+
output_type = "np"
|
83 |
+
|
84 |
+
image = image.detach().cpu()
|
85 |
+
image = image.to(torch.float32)
|
86 |
+
|
87 |
+
if output_type == "latent":
|
88 |
+
return image
|
89 |
+
|
90 |
+
# denormalize the image
|
91 |
+
image = image * 0.5 + 0.5 # .clamp(0, 1)
|
92 |
+
|
93 |
+
materials = []
|
94 |
+
for i in range(image.shape[0]):
|
95 |
+
|
96 |
+
material = StableMaterialsMaterial()
|
97 |
+
material.init_from_tensor(image[i], mode=output_type)
|
98 |
+
|
99 |
+
materials.append(material)
|
100 |
+
|
101 |
+
return materials
|
102 |
+
|
103 |
+
|
104 |
+
@dataclass
|
105 |
+
class StableMaterialsMaterial:
|
106 |
+
basecolor: torch.FloatTensor
|
107 |
+
normal: torch.FloatTensor
|
108 |
+
height: torch.FloatTensor
|
109 |
+
roughness: torch.FloatTensor
|
110 |
+
metallic: torch.FloatTensor
|
111 |
+
_mode: str = "tensor" # Default mode is tensor
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
basecolor: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None,
|
116 |
+
normal: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None,
|
117 |
+
height: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None,
|
118 |
+
roughness: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None,
|
119 |
+
metallic: Optional[Union[Image.Image, np.ndarray, torch.FloatTensor]] = None,
|
120 |
+
mode: str = "tensor",
|
121 |
+
):
|
122 |
+
self._basecolor = self._to_pt(basecolor)
|
123 |
+
self._normal = self._to_pt(normal)
|
124 |
+
self._height = self._to_pt(height)
|
125 |
+
self._roughness = self._to_pt(roughness)
|
126 |
+
self._metallic = self._to_pt(metallic)
|
127 |
+
self._mode = mode
|
128 |
+
|
129 |
+
def init_from_tensor(self, image: torch.FloatTensor, mode: str = "tensor"):
|
130 |
+
assert image.shape[0] >= 8, "Input tensor should have at least 8 channels"
|
131 |
+
self._basecolor = image[:3].clamp(0, 1)
|
132 |
+
self._normal = self.compute_normal_map_z_component(image[3:5])
|
133 |
+
self._height = image[5:6].clamp(0, 1)
|
134 |
+
self._roughness = image[6:7].clamp(0, 1)
|
135 |
+
self._metallic = image[7:8].clamp(0, 1)
|
136 |
+
self._mode = mode
|
137 |
+
|
138 |
+
def resize(self, size, antialias=True):
|
139 |
+
self._basecolor = TF.resize(self._basecolor, size, antialias=antialias)
|
140 |
+
self._normal = TF.resize(self._normal, size, antialias=antialias)
|
141 |
+
self._height = TF.resize(self._height, size, antialias=antialias)
|
142 |
+
self._roughness = TF.resize(self._roughness, size, antialias=antialias)
|
143 |
+
self._metallic = TF.resize(self._metallic, size, antialias=antialias)
|
144 |
+
return self
|
145 |
+
|
146 |
+
def tile(self, num_tiles):
|
147 |
+
self._basecolor = self._basecolor.repeat(1, num_tiles, num_tiles)
|
148 |
+
self._normal = self._normal.repeat(1, num_tiles, num_tiles)
|
149 |
+
self._height = self._height.repeat(1, num_tiles, num_tiles)
|
150 |
+
self._roughness = self._roughness.repeat(1, num_tiles, num_tiles)
|
151 |
+
self._metallic = self._metallic.repeat(1, num_tiles, num_tiles)
|
152 |
+
return self
|
153 |
+
|
154 |
+
def _to_numpy(self, image: torch.FloatTensor):
|
155 |
+
if image is None:
|
156 |
+
return None
|
157 |
+
return image.numpy()
|
158 |
+
|
159 |
+
def _to_pil(self, image: torch.FloatTensor, mode: str = "RGB"):
|
160 |
+
if image is None:
|
161 |
+
return None
|
162 |
+
return TF.to_pil_image(image).convert(mode)
|
163 |
+
|
164 |
+
def _to_pt(self, image):
|
165 |
+
if image is None:
|
166 |
+
return None
|
167 |
+
if isinstance(image, np.ndarray):
|
168 |
+
image = torch.from_numpy(image)
|
169 |
+
elif isinstance(image, Image.Image):
|
170 |
+
image = TF.to_tensor(image)
|
171 |
+
return image.cpu()
|
172 |
+
|
173 |
+
def compute_normal_map_z_component(self, normal: torch.FloatTensor):
|
174 |
+
normal = normal * 2 - 1
|
175 |
+
sum_sq = (normal**2).sum(dim=0, keepdim=True)[0]
|
176 |
+
z = torch.zeros_like(sum_sq)
|
177 |
+
mask = sum_sq <= 1
|
178 |
+
z[mask] = torch.sqrt(1 - sum_sq[mask])
|
179 |
+
mask_outlier = sum_sq > 1
|
180 |
+
scale_factor = torch.sqrt(sum_sq[mask_outlier])
|
181 |
+
normal[:, mask_outlier] = normal[:, mask_outlier] / scale_factor
|
182 |
+
normal = torch.cat([normal, z.unsqueeze(0)], dim=0)
|
183 |
+
normal = normal * 0.5 + 0.5
|
184 |
+
return normal.clamp(0, 1)
|
185 |
+
|
186 |
+
def _convert(self, image, mode="RGB"):
|
187 |
+
if self._mode == "numpy":
|
188 |
+
return self._to_numpy(image)
|
189 |
+
elif self._mode == "pil":
|
190 |
+
return self._to_pil(image, mode)
|
191 |
+
return image
|
192 |
+
|
193 |
+
@property
|
194 |
+
def size(self):
|
195 |
+
return list(self._basecolor.shape[-2:])
|
196 |
+
|
197 |
+
@property
|
198 |
+
def basecolor(self):
|
199 |
+
return self._convert(self._basecolor, mode="RGB")
|
200 |
+
|
201 |
+
@property
|
202 |
+
def normal(self):
|
203 |
+
return self._convert(self._normal, mode="RGB")
|
204 |
+
|
205 |
+
@property
|
206 |
+
def height(self):
|
207 |
+
return self._convert(self._height, mode="L")
|
208 |
+
|
209 |
+
@property
|
210 |
+
def roughness(self):
|
211 |
+
return self._convert(self._roughness, mode="L")
|
212 |
+
|
213 |
+
@property
|
214 |
+
def metallic(self):
|
215 |
+
return self._convert(self._metallic, mode="L")
|
216 |
+
|
217 |
+
def as_dict(self):
|
218 |
+
return {
|
219 |
+
"basecolor": self.basecolor,
|
220 |
+
"normal": self.normal,
|
221 |
+
"height": self.height,
|
222 |
+
"roughness": self.roughness,
|
223 |
+
"metallic": self.metallic,
|
224 |
+
}
|
225 |
+
|
226 |
+
def as_list(self):
|
227 |
+
return [
|
228 |
+
self.basecolor,
|
229 |
+
self.normal,
|
230 |
+
self.height,
|
231 |
+
self.roughness,
|
232 |
+
self.metallic,
|
233 |
+
]
|
234 |
+
|
235 |
+
def as_tensor(self):
|
236 |
+
return torch.cat(
|
237 |
+
[
|
238 |
+
self._basecolor,
|
239 |
+
self._normal[:2],
|
240 |
+
self._height,
|
241 |
+
self._roughness,
|
242 |
+
self._metallic,
|
243 |
+
],
|
244 |
+
dim=0,
|
245 |
+
)
|
246 |
+
|
247 |
+
|
248 |
+
@dataclass
|
249 |
+
class StableMaterialsPipelineOutput(BaseOutput):
|
250 |
+
"""
|
251 |
+
Output class for Stable Diffusion pipelines.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
255 |
+
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
|
256 |
+
num_channels)`.
|
257 |
+
"""
|
258 |
+
|
259 |
+
images: List[StableMaterialsMaterial]
|
260 |
+
|
261 |
+
|
262 |
+
def patch(x, patch_factor=2):
|
263 |
+
if isinstance(x, (list, tuple)):
|
264 |
+
pass
|
265 |
+
|
266 |
+
b, c, h, w = x.shape
|
267 |
+
patch_size = h // patch_factor
|
268 |
+
|
269 |
+
x = x.unfold(2, patch_size, patch_size).unfold(3, patch_size, patch_size)
|
270 |
+
x = x.permute(0, 2, 3, 1, 4, 5).contiguous().view(-1, c, patch_size, patch_size)
|
271 |
+
|
272 |
+
n_patches = x.shape[0] // b
|
273 |
+
|
274 |
+
return x, (b, h), n_patches, patch_size
|
275 |
+
|
276 |
+
|
277 |
+
def unpatch(x, b, h, n_patches, patch_size=32):
|
278 |
+
if isinstance(x, (list, tuple)):
|
279 |
+
if len(x) == 1:
|
280 |
+
x = x[0]
|
281 |
+
else:
|
282 |
+
pass
|
283 |
+
|
284 |
+
factor = patch_size / x.shape[-1]
|
285 |
+
h, w = int(h / factor), int(h / factor)
|
286 |
+
|
287 |
+
c, patch_size = x.shape[1], x.shape[2]
|
288 |
+
n_patches = x.shape[0] // b
|
289 |
+
|
290 |
+
x = x.reshape(b, n_patches, c, patch_size, patch_size)
|
291 |
+
x = x.permute(0, 2, 3, 4, 1).contiguous().view(b, c * patch_size * patch_size, -1)
|
292 |
+
|
293 |
+
x = F.fold(
|
294 |
+
x,
|
295 |
+
output_size=(h, w),
|
296 |
+
kernel_size=patch_size,
|
297 |
+
stride=patch_size,
|
298 |
+
)
|
299 |
+
|
300 |
+
return x
|
301 |
+
|
302 |
+
|
303 |
+
def roll(x):
|
304 |
+
roll_h = torch.randint(0, 256, (1,)).item() // 2 * 2
|
305 |
+
roll_w = torch.randint(0, 256, (1,)).item() // 2 * 2
|
306 |
+
|
307 |
+
x = torch.roll(x, shifts=(roll_h, roll_w), dims=(2, 3))
|
308 |
+
|
309 |
+
return x, (roll_h, roll_w)
|
310 |
+
|
311 |
+
|
312 |
+
def unroll(x, roll_h, roll_w, factor=1.0):
|
313 |
+
roll_h = int(roll_h * factor)
|
314 |
+
roll_w = int(roll_w * factor)
|
315 |
+
x = torch.roll(x, shifts=(-roll_h, -roll_w), dims=(2, 3))
|
316 |
+
return x
|
317 |
+
|
318 |
+
|
319 |
+
@contextlib.contextmanager
|
320 |
+
def rolled_conv(enabled=True):
|
321 |
+
conv = torch.nn.Conv2d
|
322 |
+
|
323 |
+
if enabled:
|
324 |
+
# Save the original conv's constructor
|
325 |
+
orig_forward = conv.forward
|
326 |
+
|
327 |
+
def forward(self, x, *args, **kwargs):
|
328 |
+
x, (roll_h, roll_w) = roll(x)
|
329 |
+
|
330 |
+
pad = 4
|
331 |
+
x = F.pad(x, (pad, pad, pad, pad), mode="circular")
|
332 |
+
h = x.shape[-2]
|
333 |
+
|
334 |
+
x = orig_forward(self, x, *args, **kwargs)
|
335 |
+
h1 = x.shape[-2]
|
336 |
+
factor = h1 / h
|
337 |
+
|
338 |
+
pad = int(pad * factor)
|
339 |
+
x = x[..., pad:-pad, pad:-pad]
|
340 |
+
x = unroll(x, roll_h, roll_w, factor)
|
341 |
+
|
342 |
+
return x
|
343 |
+
|
344 |
+
# Patch conv's constructor
|
345 |
+
conv.forward = forward
|
346 |
+
# conv.__init__ = __init__
|
347 |
+
yield conv
|
348 |
+
|
349 |
+
# Restore the original conv's constructor
|
350 |
+
conv.forward = orig_forward
|
351 |
+
else:
|
352 |
+
# Use the original conv
|
353 |
+
yield conv
|
354 |
+
|
355 |
+
|
356 |
+
@contextlib.contextmanager
|
357 |
+
def tiled_attn(enabled=True, scale_multiplier=4):
|
358 |
+
conv = Transformer2DModel
|
359 |
+
|
360 |
+
if enabled:
|
361 |
+
# Save the original conv's constructor
|
362 |
+
orig_forward = conv.forward
|
363 |
+
# mult = scale_multiplier
|
364 |
+
|
365 |
+
def forward(self, hidden_states, encoder_hidden_states, *args, **kwargs):
|
366 |
+
hidden_states, (roll_h, roll_w) = roll(hidden_states)
|
367 |
+
hidden_states, (b, h), n_patches, patch_size = patch(
|
368 |
+
hidden_states, self.scale_multiplier
|
369 |
+
)
|
370 |
+
encoder_hidden_states = encoder_hidden_states.repeat_interleave(
|
371 |
+
n_patches, dim=0
|
372 |
+
)
|
373 |
+
chunks = math.ceil(len(hidden_states) / 8)
|
374 |
+
hidden_states = hidden_states.chunk(chunks, dim=0)
|
375 |
+
encoder_hidden_states = encoder_hidden_states.chunk(chunks, dim=0)
|
376 |
+
result = []
|
377 |
+
for i in range(chunks):
|
378 |
+
result.append(
|
379 |
+
orig_forward(
|
380 |
+
self,
|
381 |
+
hidden_states[i],
|
382 |
+
encoder_hidden_states[i],
|
383 |
+
*args,
|
384 |
+
**kwargs,
|
385 |
+
)[0]
|
386 |
+
)
|
387 |
+
hidden_states = torch.cat(result, dim=0)
|
388 |
+
hidden_states = unpatch(hidden_states, b, h, n_patches, patch_size)
|
389 |
+
hidden_states = unroll(hidden_states, roll_h, roll_w)
|
390 |
+
return (hidden_states,)
|
391 |
+
|
392 |
+
# Patch conv's constructor
|
393 |
+
conv.scale_multiplier = scale_multiplier
|
394 |
+
conv.forward = forward
|
395 |
+
yield conv
|
396 |
+
|
397 |
+
# Restore the original conv's constructor
|
398 |
+
conv.forward = orig_forward
|
399 |
+
else:
|
400 |
+
# Use the original conv
|
401 |
+
yield conv
|
402 |
+
|
403 |
+
|
404 |
+
class StableMaterialsPipeline(DiffusionPipeline, FromSingleFileMixin):
|
405 |
+
|
406 |
+
model_cpu_offload_seq = "prompt_encoder->unet->vae"
|
407 |
+
|
408 |
+
def __init__(
|
409 |
+
self,
|
410 |
+
vae: AutoencoderKL,
|
411 |
+
unet: UNet2DConditionModel,
|
412 |
+
# prompt_encoder: nn.Module,
|
413 |
+
scheduler: KarrasDiffusionSchedulers,
|
414 |
+
text_encoder: CLIPTextModel,
|
415 |
+
tokenizer: CLIPTokenizer,
|
416 |
+
vision_encoder: CLIPVisionModel,
|
417 |
+
processor: CLIPImageProcessor,
|
418 |
+
):
|
419 |
+
super().__init__()
|
420 |
+
|
421 |
+
self.register_modules(
|
422 |
+
vae=vae,
|
423 |
+
unet=unet,
|
424 |
+
# prompt_encoder=prompt_encoder,
|
425 |
+
scheduler=scheduler,
|
426 |
+
# Conditioning modules
|
427 |
+
tokenizer=tokenizer,
|
428 |
+
processor=processor,
|
429 |
+
text_encoder=text_encoder,
|
430 |
+
vision_encoder=vision_encoder,
|
431 |
+
)
|
432 |
+
|
433 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
434 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
435 |
+
|
436 |
+
def enable_vae_slicing(self):
|
437 |
+
r"""
|
438 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
439 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
440 |
+
"""
|
441 |
+
self.vae.enable_slicing()
|
442 |
+
|
443 |
+
def disable_vae_slicing(self):
|
444 |
+
r"""
|
445 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
446 |
+
computing decoding in one step.
|
447 |
+
"""
|
448 |
+
self.vae.disable_slicing()
|
449 |
+
|
450 |
+
def enable_vae_tiling(self):
|
451 |
+
r"""
|
452 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
453 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
454 |
+
processing larger images.
|
455 |
+
"""
|
456 |
+
self.vae.enable_tiling()
|
457 |
+
|
458 |
+
def disable_vae_tiling(self):
|
459 |
+
r"""
|
460 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
461 |
+
computing decoding in one step.
|
462 |
+
"""
|
463 |
+
self.vae.disable_tiling()
|
464 |
+
|
465 |
+
def __encode_text(self, text):
|
466 |
+
inputs = self.tokenizer(text, padding=True, return_tensors="pt")
|
467 |
+
inputs["input_ids"] = inputs["input_ids"].to(self.device)
|
468 |
+
inputs["attention_mask"] = inputs["attention_mask"].to(self.device)
|
469 |
+
outputs = self.text_encoder(**inputs)
|
470 |
+
return outputs.text_embeds.unsqueeze(1)
|
471 |
+
|
472 |
+
def __encode_image(self, image):
|
473 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
474 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(self.device)
|
475 |
+
outputs = self.vision_encoder(**inputs)
|
476 |
+
return outputs.image_embeds.unsqueeze(1)
|
477 |
+
|
478 |
+
def __encode_prompt(
|
479 |
+
self,
|
480 |
+
prompt,
|
481 |
+
):
|
482 |
+
if type(prompt) != list:
|
483 |
+
prompt = [prompt]
|
484 |
+
|
485 |
+
embs = []
|
486 |
+
for prompt in prompt:
|
487 |
+
if isinstance(prompt, str):
|
488 |
+
embs.append(self.__encode_text(prompt))
|
489 |
+
elif type(prompt) in get_args(ImageInput):
|
490 |
+
embs.append(self.__encode_image(prompt))
|
491 |
+
else:
|
492 |
+
raise NotImplementedError
|
493 |
+
|
494 |
+
return torch.cat(embs, dim=0)
|
495 |
+
|
496 |
+
def encode_prompt(
|
497 |
+
self,
|
498 |
+
prompt,
|
499 |
+
device,
|
500 |
+
num_images_per_prompt,
|
501 |
+
do_classifier_free_guidance,
|
502 |
+
negative_prompt=None,
|
503 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
504 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
505 |
+
):
|
506 |
+
r"""
|
507 |
+
Encodes the prompt into text encoder hidden states.
|
508 |
+
|
509 |
+
Args:
|
510 |
+
prompt (`str` or `List[str]`, *optional*):
|
511 |
+
prompt to be encoded
|
512 |
+
device: (`torch.device`):
|
513 |
+
torch device
|
514 |
+
num_images_per_prompt (`int`):
|
515 |
+
number of images that should be generated per prompt
|
516 |
+
do_classifier_free_guidance (`bool`):
|
517 |
+
whether to use classifier free guidance or not
|
518 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
519 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
520 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
521 |
+
less than `1`).
|
522 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
523 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
524 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
525 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
526 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
527 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
528 |
+
argument.
|
529 |
+
"""
|
530 |
+
if (
|
531 |
+
prompt is not None
|
532 |
+
and isinstance(prompt, str)
|
533 |
+
or isinstance(prompt, Image.Image)
|
534 |
+
):
|
535 |
+
batch_size = 1
|
536 |
+
elif prompt is not None and isinstance(prompt, list):
|
537 |
+
batch_size = len(prompt)
|
538 |
+
else:
|
539 |
+
batch_size = prompt_embeds.shape[0]
|
540 |
+
|
541 |
+
if prompt_embeds is None:
|
542 |
+
prompt_embeds = self.__encode_prompt(prompt)
|
543 |
+
|
544 |
+
if self.unet is not None:
|
545 |
+
prompt_embeds_dtype = self.unet.dtype
|
546 |
+
else:
|
547 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
548 |
+
|
549 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
550 |
+
|
551 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
552 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
553 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
554 |
+
prompt_embeds = prompt_embeds.view(
|
555 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
556 |
+
)
|
557 |
+
|
558 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
559 |
+
uncond_tokens: List[str]
|
560 |
+
if negative_prompt is None:
|
561 |
+
# uncond_tokens = [""] * batch_size
|
562 |
+
uncond_tokens = [Image.new("RGB", (512, 512), (0, 0, 0))] * batch_size
|
563 |
+
elif isinstance(negative_prompt, str):
|
564 |
+
uncond_tokens = [negative_prompt] * batch_size
|
565 |
+
elif len(negative_prompt) != batch_size:
|
566 |
+
raise ValueError(
|
567 |
+
"The `negative_prompt` must be a string, a list of strings of length `batch_size`, or `None`."
|
568 |
+
)
|
569 |
+
else:
|
570 |
+
uncond_tokens = negative_prompt
|
571 |
+
|
572 |
+
negative_prompt_embeds = self.__encode_prompt(uncond_tokens)
|
573 |
+
|
574 |
+
# get unconditional embeddings for classifier free guidance
|
575 |
+
if do_classifier_free_guidance:
|
576 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
577 |
+
seq_len = negative_prompt_embeds.shape[1]
|
578 |
+
|
579 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
580 |
+
dtype=prompt_embeds_dtype, device=device
|
581 |
+
)
|
582 |
+
|
583 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
584 |
+
1, num_images_per_prompt, 1
|
585 |
+
)
|
586 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
587 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
588 |
+
)
|
589 |
+
|
590 |
+
return prompt_embeds, negative_prompt_embeds
|
591 |
+
|
592 |
+
def decode_latents(self, latents):
|
593 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
594 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
595 |
+
|
596 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
597 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
598 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
599 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
600 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
601 |
+
return image
|
602 |
+
|
603 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
604 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
605 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
606 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
607 |
+
# and should be between [0, 1]
|
608 |
+
|
609 |
+
accepts_eta = "eta" in set(
|
610 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
611 |
+
)
|
612 |
+
extra_step_kwargs = {}
|
613 |
+
if accepts_eta:
|
614 |
+
extra_step_kwargs["eta"] = eta
|
615 |
+
|
616 |
+
# check if the scheduler accepts generator
|
617 |
+
accepts_generator = "generator" in set(
|
618 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
619 |
+
)
|
620 |
+
if accepts_generator:
|
621 |
+
extra_step_kwargs["generator"] = generator
|
622 |
+
return extra_step_kwargs
|
623 |
+
|
624 |
+
def check_inputs(
|
625 |
+
self,
|
626 |
+
prompt,
|
627 |
+
height,
|
628 |
+
width,
|
629 |
+
negative_prompt=None,
|
630 |
+
prompt_embeds=None,
|
631 |
+
negative_prompt_embeds=None,
|
632 |
+
):
|
633 |
+
if height % 8 != 0 or width % 8 != 0:
|
634 |
+
raise ValueError(
|
635 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
636 |
+
)
|
637 |
+
|
638 |
+
if prompt is not None and prompt_embeds is not None:
|
639 |
+
raise ValueError(
|
640 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
641 |
+
" only forward one of the two."
|
642 |
+
)
|
643 |
+
elif prompt is None and prompt_embeds is None:
|
644 |
+
raise ValueError(
|
645 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
646 |
+
)
|
647 |
+
elif prompt is not None and (not isinstance(prompt, (str, list, Image.Image))):
|
648 |
+
raise ValueError(
|
649 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
650 |
+
)
|
651 |
+
|
652 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
653 |
+
raise ValueError(
|
654 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
655 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
656 |
+
)
|
657 |
+
|
658 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
659 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
660 |
+
raise ValueError(
|
661 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
662 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
663 |
+
f" {negative_prompt_embeds.shape}."
|
664 |
+
)
|
665 |
+
|
666 |
+
def prepare_latents(
|
667 |
+
self,
|
668 |
+
batch_size,
|
669 |
+
num_channels_latents,
|
670 |
+
height,
|
671 |
+
width,
|
672 |
+
dtype,
|
673 |
+
device,
|
674 |
+
generator,
|
675 |
+
latents=None,
|
676 |
+
):
|
677 |
+
shape = (
|
678 |
+
batch_size,
|
679 |
+
num_channels_latents,
|
680 |
+
height // self.vae_scale_factor,
|
681 |
+
width // self.vae_scale_factor,
|
682 |
+
)
|
683 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
684 |
+
raise ValueError(
|
685 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
686 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
687 |
+
)
|
688 |
+
|
689 |
+
if latents is None:
|
690 |
+
latents = randn_tensor(
|
691 |
+
shape, generator=generator, device=device, dtype=dtype
|
692 |
+
)
|
693 |
+
else:
|
694 |
+
latents = latents.to(device)
|
695 |
+
|
696 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
697 |
+
latents = latents * self.scheduler.init_noise_sigma
|
698 |
+
return latents
|
699 |
+
|
700 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
701 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
702 |
+
|
703 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
704 |
+
|
705 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
706 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
707 |
+
|
708 |
+
Args:
|
709 |
+
s1 (`float`):
|
710 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
711 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
712 |
+
s2 (`float`):
|
713 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
714 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
715 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
716 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
717 |
+
"""
|
718 |
+
if not hasattr(self, "unet"):
|
719 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
720 |
+
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
721 |
+
|
722 |
+
def disable_freeu(self):
|
723 |
+
"""Disables the FreeU mechanism if enabled."""
|
724 |
+
self.unet.disable_freeu()
|
725 |
+
|
726 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
727 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
728 |
+
"""
|
729 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
730 |
+
|
731 |
+
Args:
|
732 |
+
timesteps (`torch.Tensor`):
|
733 |
+
generate embedding vectors at these timesteps
|
734 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
735 |
+
dimension of the embeddings to generate
|
736 |
+
dtype:
|
737 |
+
data type of the generated embeddings
|
738 |
+
|
739 |
+
Returns:
|
740 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
741 |
+
"""
|
742 |
+
assert len(w.shape) == 1
|
743 |
+
w = w * 1000.0
|
744 |
+
|
745 |
+
half_dim = embedding_dim // 2
|
746 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
747 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
748 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
749 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
750 |
+
if embedding_dim % 2 == 1: # zero pad
|
751 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
752 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
753 |
+
return emb
|
754 |
+
|
755 |
+
@property
|
756 |
+
def guidance_scale(self):
|
757 |
+
return self._guidance_scale
|
758 |
+
|
759 |
+
@property
|
760 |
+
def guidance_rescale(self):
|
761 |
+
return self._guidance_rescale
|
762 |
+
|
763 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
764 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
765 |
+
# corresponds to doing no classifier free guidance.
|
766 |
+
@property
|
767 |
+
def do_classifier_free_guidance(self):
|
768 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
769 |
+
|
770 |
+
@property
|
771 |
+
def cross_attention_kwargs(self):
|
772 |
+
return self._cross_attention_kwargs
|
773 |
+
|
774 |
+
@property
|
775 |
+
def num_timesteps(self):
|
776 |
+
return self._num_timesteps
|
777 |
+
|
778 |
+
@property
|
779 |
+
def interrupt(self):
|
780 |
+
return self._interrupt
|
781 |
+
|
782 |
+
@torch.no_grad()
|
783 |
+
# @replace_example_docstring(EXAMPLE_DOC_STRING)
|
784 |
+
def __call__(
|
785 |
+
self,
|
786 |
+
prompt: Union[
|
787 |
+
str, List[str], PipelineImageInput, List[PipelineImageInput]
|
788 |
+
] = None,
|
789 |
+
height: Optional[int] = None,
|
790 |
+
width: Optional[int] = None,
|
791 |
+
tileable: bool = False,
|
792 |
+
patched: bool = False,
|
793 |
+
num_inference_steps: int = 50,
|
794 |
+
timesteps: List[int] = None,
|
795 |
+
guidance_scale: float = 7.5,
|
796 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
797 |
+
num_images_per_prompt: Optional[int] = 1,
|
798 |
+
eta: float = 0.0,
|
799 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
800 |
+
latents: Optional[torch.FloatTensor] = None,
|
801 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
802 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
803 |
+
output_type: Optional[str] = "pil",
|
804 |
+
return_dict: bool = True,
|
805 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
806 |
+
guidance_rescale: float = 0.0,
|
807 |
+
**kwargs,
|
808 |
+
):
|
809 |
+
|
810 |
+
# 0. Default height and width to unet
|
811 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
812 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
813 |
+
|
814 |
+
# 1. Check inputs. Raise error if not correct
|
815 |
+
self.check_inputs(
|
816 |
+
prompt,
|
817 |
+
height,
|
818 |
+
width,
|
819 |
+
negative_prompt,
|
820 |
+
prompt_embeds,
|
821 |
+
negative_prompt_embeds,
|
822 |
+
)
|
823 |
+
|
824 |
+
self._guidance_scale = guidance_scale
|
825 |
+
self._guidance_rescale = guidance_rescale
|
826 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
827 |
+
self._interrupt = False
|
828 |
+
|
829 |
+
# 2. Define call parameters
|
830 |
+
if prompt is not None and (
|
831 |
+
isinstance(prompt, str) or isinstance(prompt, Image.Image)
|
832 |
+
):
|
833 |
+
batch_size = 1
|
834 |
+
elif prompt is not None and isinstance(prompt, list):
|
835 |
+
batch_size = len(prompt)
|
836 |
+
else:
|
837 |
+
batch_size = prompt_embeds.shape[0]
|
838 |
+
|
839 |
+
device = self._execution_device
|
840 |
+
|
841 |
+
# 3. Encode input prompt
|
842 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
843 |
+
prompt,
|
844 |
+
device,
|
845 |
+
num_images_per_prompt,
|
846 |
+
self.do_classifier_free_guidance,
|
847 |
+
negative_prompt,
|
848 |
+
prompt_embeds=prompt_embeds,
|
849 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
850 |
+
)
|
851 |
+
|
852 |
+
# For classifier free guidance, we need to do two forward passes.
|
853 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
854 |
+
# to avoid doing two forward passes
|
855 |
+
if self.do_classifier_free_guidance:
|
856 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
857 |
+
|
858 |
+
# 4. Prepare timesteps
|
859 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
860 |
+
self.scheduler, num_inference_steps, device, timesteps
|
861 |
+
)
|
862 |
+
|
863 |
+
# 5. Prepare latent variables
|
864 |
+
num_channels_latents = self.unet.config.in_channels
|
865 |
+
latents = self.prepare_latents(
|
866 |
+
batch_size * num_images_per_prompt,
|
867 |
+
num_channels_latents,
|
868 |
+
height,
|
869 |
+
width,
|
870 |
+
prompt_embeds.dtype,
|
871 |
+
device,
|
872 |
+
generator,
|
873 |
+
latents,
|
874 |
+
)
|
875 |
+
|
876 |
+
# 6. Prepare extra step kwargs.
|
877 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
878 |
+
|
879 |
+
# 6.2 Optionally get Guidance Scale Embedding
|
880 |
+
timestep_cond = None
|
881 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
882 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
|
883 |
+
batch_size * num_images_per_prompt
|
884 |
+
)
|
885 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
886 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
887 |
+
).to(device=device, dtype=latents.dtype)
|
888 |
+
|
889 |
+
# 7. Denoising loop
|
890 |
+
self._num_timesteps = len(timesteps)
|
891 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
892 |
+
for i, t in enumerate(timesteps):
|
893 |
+
if self.interrupt:
|
894 |
+
continue
|
895 |
+
|
896 |
+
# expand the latents if we are doing classifier free guidance
|
897 |
+
latent_model_input = (
|
898 |
+
torch.cat([latents] * 2)
|
899 |
+
if self.do_classifier_free_guidance
|
900 |
+
else latents
|
901 |
+
)
|
902 |
+
latent_model_input = self.scheduler.scale_model_input(
|
903 |
+
latent_model_input, t
|
904 |
+
)
|
905 |
+
|
906 |
+
scale_multiplier = (
|
907 |
+
latent_model_input.shape[-1]
|
908 |
+
) // self.unet.config.sample_size
|
909 |
+
|
910 |
+
past_mid = i >= len(timesteps) // 4
|
911 |
+
# predict the noise residual
|
912 |
+
with rolled_conv(enabled=(tileable & past_mid)):
|
913 |
+
with tiled_attn(enabled=patched, scale_multiplier=scale_multiplier):
|
914 |
+
noise_pred = self.unet(
|
915 |
+
latent_model_input,
|
916 |
+
t,
|
917 |
+
encoder_hidden_states=prompt_embeds,
|
918 |
+
timestep_cond=timestep_cond,
|
919 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
920 |
+
return_dict=False,
|
921 |
+
)[0]
|
922 |
+
|
923 |
+
# perform guidance
|
924 |
+
if self.do_classifier_free_guidance:
|
925 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
926 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
927 |
+
noise_pred_text - noise_pred_uncond
|
928 |
+
)
|
929 |
+
|
930 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
931 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
932 |
+
noise_pred = rescale_noise_cfg(
|
933 |
+
noise_pred,
|
934 |
+
noise_pred_text,
|
935 |
+
guidance_rescale=self.guidance_rescale,
|
936 |
+
)
|
937 |
+
|
938 |
+
# compute the previous noisy sample x_t -> x_t-1
|
939 |
+
latents = self.scheduler.step(
|
940 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
941 |
+
)[0]
|
942 |
+
|
943 |
+
# call the callback, if provided
|
944 |
+
if i == len(timesteps) - 1 or (i + 1) % self.scheduler.order == 0:
|
945 |
+
progress_bar.update()
|
946 |
+
|
947 |
+
if not output_type == "latent":
|
948 |
+
if tileable:
|
949 |
+
# decode padded latent to preserve tileability
|
950 |
+
l_height = height // self.vae_scale_factor
|
951 |
+
l_width = width // self.vae_scale_factor
|
952 |
+
pad = l_height // 4
|
953 |
+
latents = TF.center_crop(
|
954 |
+
latents.repeat(1, 1, 3, 3), (l_height + pad, l_width + pad)
|
955 |
+
)
|
956 |
+
|
957 |
+
# decode the latents
|
958 |
+
image = self.vae.decode(
|
959 |
+
latents / self.vae.config.scaling_factor,
|
960 |
+
return_dict=False,
|
961 |
+
generator=generator,
|
962 |
+
)[0]
|
963 |
+
|
964 |
+
# crop to original size
|
965 |
+
image = TF.center_crop(image, (height, width))
|
966 |
+
else:
|
967 |
+
image = latents
|
968 |
+
|
969 |
+
image = postprocess(image, output_type=output_type)
|
970 |
+
|
971 |
+
# Offload all models
|
972 |
+
self.maybe_free_model_hooks()
|
973 |
+
|
974 |
+
if not return_dict:
|
975 |
+
return image
|
976 |
+
|
977 |
+
return StableMaterialsPipelineOutput(images=image)
|
processor/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processor/preprocessor_config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"do_center_crop",
|
8 |
+
"crop_size",
|
9 |
+
"do_rescale",
|
10 |
+
"rescale_factor",
|
11 |
+
"do_normalize",
|
12 |
+
"image_mean",
|
13 |
+
"image_std",
|
14 |
+
"do_convert_rgb",
|
15 |
+
"return_tensors",
|
16 |
+
"data_format",
|
17 |
+
"input_data_format"
|
18 |
+
],
|
19 |
+
"crop_size": {
|
20 |
+
"height": 224,
|
21 |
+
"width": 224
|
22 |
+
},
|
23 |
+
"do_center_crop": true,
|
24 |
+
"do_convert_rgb": true,
|
25 |
+
"do_normalize": true,
|
26 |
+
"do_rescale": true,
|
27 |
+
"do_resize": true,
|
28 |
+
"image_mean": [
|
29 |
+
0.48145466,
|
30 |
+
0.4578275,
|
31 |
+
0.40821073
|
32 |
+
],
|
33 |
+
"image_processor_type": "CLIPImageProcessor",
|
34 |
+
"image_std": [
|
35 |
+
0.26862954,
|
36 |
+
0.26130258,
|
37 |
+
0.27577711
|
38 |
+
],
|
39 |
+
"processor_class": "CLIPProcessor",
|
40 |
+
"resample": 3,
|
41 |
+
"rescale_factor": 0.00392156862745098,
|
42 |
+
"size": {
|
43 |
+
"shortest_edge": 224
|
44 |
+
}
|
45 |
+
}
|
processor/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
processor/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processor/tokenizer_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"49406": {
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49407": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"bos_token": "<|startoftext|>",
|
22 |
+
"clean_up_tokenization_spaces": true,
|
23 |
+
"do_lower_case": true,
|
24 |
+
"eos_token": "<|endoftext|>",
|
25 |
+
"errors": "replace",
|
26 |
+
"model_max_length": 77,
|
27 |
+
"pad_token": "<|endoftext|>",
|
28 |
+
"processor_class": "CLIPProcessor",
|
29 |
+
"tokenizer_class": "CLIPTokenizer",
|
30 |
+
"unk_token": "<|endoftext|>"
|
31 |
+
}
|
processor/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.27.2",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"clip_sample_range": 1.0,
|
9 |
+
"dynamic_thresholding_ratio": 0.995,
|
10 |
+
"interpolation_type": "linear",
|
11 |
+
"num_train_timesteps": 1000,
|
12 |
+
"prediction_type": "epsilon",
|
13 |
+
"rescale_betas_zero_snr": false,
|
14 |
+
"sample_max_value": 1.0,
|
15 |
+
"set_alpha_to_one": false,
|
16 |
+
"skip_prk_steps": true,
|
17 |
+
"steps_offset": 1,
|
18 |
+
"thresholding": false,
|
19 |
+
"timestep_spacing": "leading",
|
20 |
+
"trained_betas": null
|
21 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/clip-vit-large-patch14",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModelWithProjection"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.40.2",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
text_encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dae0eabbb1fd83756ed9dd893c17ff2f6825c98555a1e1b96154e2df0739b9e2
|
3 |
+
size 494624560
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"49406": {
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49407": {
|
13 |
+
"content": "<|endoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"bos_token": "<|startoftext|>",
|
22 |
+
"clean_up_tokenization_spaces": true,
|
23 |
+
"do_lower_case": true,
|
24 |
+
"eos_token": "<|endoftext|>",
|
25 |
+
"errors": "replace",
|
26 |
+
"model_max_length": 77,
|
27 |
+
"pad_token": "<|endoftext|>",
|
28 |
+
"tokenizer_class": "CLIPTokenizer",
|
29 |
+
"unk_token": "<|endoftext|>"
|
30 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unet/config.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.27.2",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"addition_embed_type": null,
|
6 |
+
"addition_embed_type_num_heads": 64,
|
7 |
+
"addition_time_embed_dim": null,
|
8 |
+
"attention_head_dim": 8,
|
9 |
+
"attention_type": "default",
|
10 |
+
"block_out_channels": [
|
11 |
+
320,
|
12 |
+
640,
|
13 |
+
1280,
|
14 |
+
1280
|
15 |
+
],
|
16 |
+
"center_input_sample": false,
|
17 |
+
"class_embed_type": null,
|
18 |
+
"class_embeddings_concat": false,
|
19 |
+
"conv_in_kernel": 3,
|
20 |
+
"conv_out_kernel": 3,
|
21 |
+
"cross_attention_dim": 768,
|
22 |
+
"cross_attention_norm": null,
|
23 |
+
"down_block_types": [
|
24 |
+
"CrossAttnDownBlock2D",
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"DownBlock2D"
|
28 |
+
],
|
29 |
+
"downsample_padding": 1,
|
30 |
+
"dropout": 0.0,
|
31 |
+
"dual_cross_attention": false,
|
32 |
+
"encoder_hid_dim": null,
|
33 |
+
"encoder_hid_dim_type": null,
|
34 |
+
"flip_sin_to_cos": true,
|
35 |
+
"freq_shift": 0,
|
36 |
+
"in_channels": 18,
|
37 |
+
"layers_per_block": 2,
|
38 |
+
"mid_block_only_cross_attention": null,
|
39 |
+
"mid_block_scale_factor": 1,
|
40 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
41 |
+
"norm_eps": 1e-05,
|
42 |
+
"norm_num_groups": 32,
|
43 |
+
"num_attention_heads": null,
|
44 |
+
"num_class_embeds": null,
|
45 |
+
"only_cross_attention": false,
|
46 |
+
"out_channels": 18,
|
47 |
+
"projection_class_embeddings_input_dim": null,
|
48 |
+
"resnet_out_scale_factor": 1.0,
|
49 |
+
"resnet_skip_time_act": false,
|
50 |
+
"resnet_time_scale_shift": "default",
|
51 |
+
"reverse_transformer_layers_per_block": null,
|
52 |
+
"sample_size": 64,
|
53 |
+
"time_cond_proj_dim": null,
|
54 |
+
"time_embedding_act_fn": null,
|
55 |
+
"time_embedding_dim": null,
|
56 |
+
"time_embedding_type": "positional",
|
57 |
+
"timestep_post_act": null,
|
58 |
+
"transformer_layers_per_block": 1,
|
59 |
+
"up_block_types": [
|
60 |
+
"UpBlock2D",
|
61 |
+
"CrossAttnUpBlock2D",
|
62 |
+
"CrossAttnUpBlock2D",
|
63 |
+
"CrossAttnUpBlock2D"
|
64 |
+
],
|
65 |
+
"upcast_attention": false,
|
66 |
+
"use_linear_projection": false
|
67 |
+
}
|
unet/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:726f9bc81cab88af34a29a6bd89e9e442ca89612f66d4cf5a252c7b23ba5b334
|
3 |
+
size 3438490176
|
unet_lcm/config.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.27.2",
|
4 |
+
"_name_or_path": "C:/Users/giuse/source/repos/methods/matforger/diffusers/stablematerials",
|
5 |
+
"act_fn": "silu",
|
6 |
+
"addition_embed_type": null,
|
7 |
+
"addition_embed_type_num_heads": 64,
|
8 |
+
"addition_time_embed_dim": null,
|
9 |
+
"attention_head_dim": 8,
|
10 |
+
"attention_type": "default",
|
11 |
+
"block_out_channels": [
|
12 |
+
320,
|
13 |
+
640,
|
14 |
+
1280,
|
15 |
+
1280
|
16 |
+
],
|
17 |
+
"center_input_sample": false,
|
18 |
+
"class_embed_type": null,
|
19 |
+
"class_embeddings_concat": false,
|
20 |
+
"conv_in_kernel": 3,
|
21 |
+
"conv_out_kernel": 3,
|
22 |
+
"cross_attention_dim": 768,
|
23 |
+
"cross_attention_norm": null,
|
24 |
+
"down_block_types": [
|
25 |
+
"CrossAttnDownBlock2D",
|
26 |
+
"CrossAttnDownBlock2D",
|
27 |
+
"CrossAttnDownBlock2D",
|
28 |
+
"DownBlock2D"
|
29 |
+
],
|
30 |
+
"downsample_padding": 1,
|
31 |
+
"dropout": 0.0,
|
32 |
+
"dual_cross_attention": false,
|
33 |
+
"encoder_hid_dim": null,
|
34 |
+
"encoder_hid_dim_type": null,
|
35 |
+
"flip_sin_to_cos": true,
|
36 |
+
"freq_shift": 0,
|
37 |
+
"in_channels": 18,
|
38 |
+
"layers_per_block": 2,
|
39 |
+
"mid_block_only_cross_attention": null,
|
40 |
+
"mid_block_scale_factor": 1,
|
41 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
42 |
+
"norm_eps": 1e-05,
|
43 |
+
"norm_num_groups": 32,
|
44 |
+
"num_attention_heads": null,
|
45 |
+
"num_class_embeds": null,
|
46 |
+
"only_cross_attention": false,
|
47 |
+
"out_channels": 18,
|
48 |
+
"projection_class_embeddings_input_dim": null,
|
49 |
+
"resnet_out_scale_factor": 1.0,
|
50 |
+
"resnet_skip_time_act": false,
|
51 |
+
"resnet_time_scale_shift": "default",
|
52 |
+
"reverse_transformer_layers_per_block": null,
|
53 |
+
"sample_size": 64,
|
54 |
+
"time_cond_proj_dim": 256,
|
55 |
+
"time_embedding_act_fn": null,
|
56 |
+
"time_embedding_dim": null,
|
57 |
+
"time_embedding_type": "positional",
|
58 |
+
"timestep_post_act": null,
|
59 |
+
"transformer_layers_per_block": 1,
|
60 |
+
"up_block_types": [
|
61 |
+
"UpBlock2D",
|
62 |
+
"CrossAttnUpBlock2D",
|
63 |
+
"CrossAttnUpBlock2D",
|
64 |
+
"CrossAttnUpBlock2D"
|
65 |
+
],
|
66 |
+
"upcast_attention": false,
|
67 |
+
"use_linear_projection": false
|
68 |
+
}
|
unet_lcm/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3a47c261bf9f19f7022fde0b45e1f5705409ed7d51a3e5baecc1fa8da7baa1a
|
3 |
+
size 3438817960
|
vae/config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.27.2",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
512,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"DownEncoderBlock2D",
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D"
|
16 |
+
],
|
17 |
+
"force_upcast": true,
|
18 |
+
"in_channels": 9,
|
19 |
+
"latent_channels": 18,
|
20 |
+
"latents_mean": null,
|
21 |
+
"latents_std": null,
|
22 |
+
"layers_per_block": 2,
|
23 |
+
"norm_num_groups": 32,
|
24 |
+
"out_channels": 9,
|
25 |
+
"sample_size": 512,
|
26 |
+
"scaling_factor": 0.18215,
|
27 |
+
"up_block_types": [
|
28 |
+
"UpDecoderBlock2D",
|
29 |
+
"UpDecoderBlock2D",
|
30 |
+
"UpDecoderBlock2D",
|
31 |
+
"UpDecoderBlock2D"
|
32 |
+
]
|
33 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dac9dfa16153ea53d01aaa1fe2a031e509e108bc5bad95379e4fa5b3524af623
|
3 |
+
size 335479204
|
vision_encoder/config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openai/clip-vit-large-patch14",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPVisionModelWithProjection"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"hidden_act": "quick_gelu",
|
9 |
+
"hidden_size": 1024,
|
10 |
+
"image_size": 224,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"model_type": "clip_vision_model",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_channels": 3,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"patch_size": 14,
|
20 |
+
"projection_dim": 768,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.40.2"
|
23 |
+
}
|
vision_encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77b33d2a3a643650857672e880ccf73adbaf114fbbadec36d142ee9d48af7e20
|
3 |
+
size 1215912728
|