{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff40e7453f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff40e745480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff40e745510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff40e7455a0>", "_build": "<function ActorCriticPolicy._build at 0x7ff40e745630>", "forward": "<function ActorCriticPolicy.forward at 0x7ff40e7456c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff40e745750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff40e7457e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff40e745870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff40e745900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff40e745990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff40e745a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff40e756780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683865859428345813, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpdfbwKylK7AHpmu6SpqTzQwJw8N6qQvQAAgD8AAIA/ACCROkoBsz8iq+U9wZMNvztJp7riF9C8AAAAAAAAAADzI9U9PJ+kP1a1lD55XxC/b6FCPrI4szwAAAAAAAAAAM38B77LuvY92m3hPaO5Pb7gZCQ8igmuPAAAAAAAAAAA5o6gvby8SD02Bhw+SntYvr9vUz0DlRG9AAAAAAAAAAAzr6W9qglgPjJmlrxFF6S+L2GPvRO5BzwAAAAAAAAAAJrlIbwU5Ia6U5NxOt7bB7YGs9M5xH2MuQAAgD8AAIA/gNJcPfaiOz3hSke+Ob6OvgRwoL3CFSm9AAAAAAAAAACNN0S+9LnBvLZ1Z7zd9O+69vEuPgRZwjsAAIA/AACAPwAfGL7bfZM9CtBUPvuJnL5BqXA+rv0xvgAAAAAAAAAABpAqPkjwmbyMFTw8hpntuuVGCb5kM7y7AACAPwAAgD+ztt69iMzbPSqLqT4flom+4Id5PfNQFT0AAAAAAAAAADpuGb7rbPo9XbYpPjzwm74C+/O8KjhAvAAAAAAAAAAAM3MlvPxUbD4Ix8y7azOKvoApArzbGmC9AAAAAAAAAAAmLlG+21HEvEAkT7yksMW6ItosPm6nmjsAAIA/AACAP4BeC77EkOk+3RmYvfGYqb7px869IlbYugAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3ZXYUWVNaMAWyUS+GMAXSUR0DHXHSpgkTpdX2UKGgGR0Bx+WSB9TgmaAdL7GgIR0DHXH5EMLF5dX2UKGgGR0ByXvS1E3KkaAdNEwFoCEdAx1yP+aScLHV9lChoBkdAcR1vYODraGgHS+9oCEdAx1yShkiD/XV9lChoBkdAcR5W1c+qzmgHS/xoCEdAx1yiidJ8OXV9lChoBkdActZp5/smfGgHTRABaAhHQMdcpcnmaH91fZQoaAZHQHKjQsGxD9hoB0vYaAhHQMdcwifpUxV1fZQoaAZHQHIUlR1oxpNoB0v2aAhHQMdcynQhOgx1fZQoaAZHQHELPa+N96VoB0vZaAhHQMdc1knb7CV1fZQoaAZHQGRQpCjUNKBoB03oA2gIR0DHXOlaEBbOdX2UKGgGR0ByLsPnSv1UaAdL52gIR0DHXQhSJj2BdX2UKGgGR0BwHqW9lEqlaAdL1mgIR0DHXSRULlV+dX2UKGgGR0Bwkog8r7O3aAdL5GgIR0DHXSY6ySmqdX2UKGgGR0BzdCElE7W/aAdNDAFoCEdAx100PNmlInV9lChoBkdAcT8kqc3ERGgHS+1oCEdAx10+dtl7MXV9lChoBkdAcDUpkwvg32gHS+xoCEdAx10/LzwtrnV9lChoBkdAcm0jY7JXAGgHS+hoCEdAx11GwPiDNHV9lChoBkdAb4qnpjc2zmgHS91oCEdAx11RHtnf23V9lChoBkdAcHUz1schkmgHS/NoCEdAx11gnUDuB3V9lChoBkdAcUCxJNCZ4WgHTRUBaAhHQMddYvIn0Cl1fZQoaAZHQHHTQDmr8zhoB0vqaAhHQMddagMUh3d1fZQoaAZHQHJFM2eg+QloB0vfaAhHQMddfT4k/r11fZQoaAZHQHJ0p/b0voNoB0v/aAhHQMddfM5n14B1fZQoaAZHQHAafs/pt79oB0vqaAhHQMddjWj45951fZQoaAZHQHF+8qFyq+9oB0v4aAhHQMddpXuVopR1fZQoaAZHQHB3FBQemvZoB0vdaAhHQMddxTrNW2h1fZQoaAZHQHAeHyd4FA5oB00FAWgIR0DHXchDG96DdX2UKGgGR0BylecNH6MzaAdL8WgIR0DHXfTgsK9gdX2UKGgGR0Bv442jwhGIaAdL3mgIR0DHXf92JSBLdX2UKGgGR0Bw9Fradtl7aAdL9WgIR0DHXgqylenidX2UKGgGR0BvJpKpT/ACaAdL6GgIR0DHXgoybhFWdX2UKGgGR0Bx0azyBkI5aAdL7WgIR0DHXhZczImxdX2UKGgGR0BxMrZL7GedaAdNEwFoCEdAx14XOFg2InV9lChoBkdAbfX9qk/KQ2gHS+ZoCEdAx14bOY6XB3V9lChoBkdAb2sjgydnTWgHS9JoCEdAx14alY2bX3V9lChoBkdAch2KuSwGGGgHS9toCEdAx14kCJ40M3V9lChoBkdAcd/c7QswtmgHS9poCEdAx148tg8bJnV9lChoBkdAcHh0WuX/pGgHTQABaAhHQMdg82bXpW51fZQoaAZHQHEghd+ocaRoB0vWaAhHQMdg9rTH80l1fZQoaAZHQHC9pFspG4JoB0vuaAhHQMdg+PC2tuF1fZQoaAZHQG/EdLpRoAZoB0vlaAhHQMdhF9Net0V1fZQoaAZHQHCiU5IYm9hoB0viaAhHQMdhM51FH8V1fZQoaAZHQHELbOqvNeNoB0vnaAhHQMdhNdb5dnl1fZQoaAZHQHE5/V7Qb+9oB0vtaAhHQMdhaPO6d2B1fZQoaAZHQHEQWI9C/oJoB0vxaAhHQMdhd2LYPG11fZQoaAZHQHHiKl54W1toB0vbaAhHQMdhgLUkOZt1fZQoaAZHQHCWFPnB+F1oB0vTaAhHQMdhg8Gkep51fZQoaAZHQHAq/MGHHm1oB0vzaAhHQMdhhQvxpcp1fZQoaAZHQHIHTs2NvO1oB0vsaAhHQMdhi57PY4B1fZQoaAZHQHBsgnDziCJoB0v7aAhHQMdhjRKpT/B1fZQoaAZHQHI720NSZShoB0vRaAhHQMdhrKIBRyh1fZQoaAZHQHFslVxS5y5oB00WAWgIR0DHYbOlGgBcdX2UKGgGR0BtZkOf/WDpaAdL2WgIR0DHYbwIrvsrdX2UKGgGR0Bvy2qR2bG4aAdL5mgIR0DHYcTdFfAsdX2UKGgGR0BywSXWvr4WaAdNCAFoCEdAx2HSSzw+dXV9lChoBkdAcEhEovzvqmgHS+NoCEdAx2Hn9R77bnV9lChoBkdAcdGB8QZn+WgHS+9oCEdAx2IRTxXnyXV9lChoBkdAcfmsJIDoyWgHS/toCEdAx2Ief8MuvnV9lChoBkdAcbSzZ6D5CWgHS8poCEdAx2I9bnoxH3V9lChoBkdAcDO8b70nPWgHS9xoCEdAx2Jcv4/NaHV9lChoBkdAcZ5QIUrTY2gHS+ZoCEdAx2JgKE3843V9lChoBkdAchVpaiblR2gHTQsBaAhHQMdiakJKJ2t1fZQoaAZHQG8Nr2YfGMpoB0vpaAhHQMdia5Sm65J1fZQoaAZHQHICJntfG+9oB0v4aAhHQMdicJBX0Xh1fZQoaAZHQHEtQFkhA4ZoB0vIaAhHQMdic6S1Vo91fZQoaAZHQG+4LJSzgMtoB00MAWgIR0DHYngA2hqTdX2UKGgGR0BvK2EmICU5aAdL1mgIR0DHYnofbKzSdX2UKGgGR0BvJ5BX0XgtaAdL1GgIR0DHYo03ZPEbdX2UKGgGR0BwYI9W6shgaAdL0mgIR0DHYpkmQbMpdX2UKGgGR0BxV+eBg/keaAdL/mgIR0DHYqhx1gYxdX2UKGgGR0BxEuQV9F4LaAdL4mgIR0DHYr3gR9PUdX2UKGgGR0Bw5jNIK+i8aAdL3WgIR0DHYuKGWUr1dX2UKGgGR0Bx0ywJPZZkaAdL5mgIR0DHYvs+C9RKdX2UKGgGR0Bxm/OJLuhLaAdL1GgIR0DHYwfTodMkdX2UKGgGR0BunACSzPa+aAdL12gIR0DHYytDfFaTdX2UKGgGR0BuTPV09yLiaAdL2WgIR0DHYz9Yr8R+dX2UKGgGR0BtJYWHk92YaAdL2WgIR0DHY0U0iyIIdX2UKGgGR0BrfFcOby6MaAdNtwJoCEdAx2NNvkzXSXV9lChoBkdAce8WvKU3XWgHS+VoCEdAx2NaiB5HE3V9lChoBkdAcPgBl+Vkc2gHS/hoCEdAx2NesmOU+3V9lChoBkdAcRHTbWVeKWgHS9hoCEdAx2NmDlo11nV9lChoBkdAcnMP6sQumWgHS/loCEdAx2NoViWmg3V9lChoBkdAcMWEZBLPEGgHS8toCEdAx2N2qlxffHV9lChoBkdAcIvm4y44ImgHS8toCEdAx2OKnLq2SnV9lChoBkdAcdSEL6UJOWgHS/loCEdAx2OO+GoJiXV9lChoBkdAcQxxmkFfRmgHS89oCEdAx2PEvq1PWXV9lChoBkdAcsNHlwLmZGgHS/FoCEdAx2PO7YChe3V9lChoBkdAcHxTt9hJAmgHS9BoCEdAx2Ptq1w5vXV9lChoBkdAcdTo1DSgG2gHS/FoCEdAx2Puj6eoUHV9lChoBkdAcT5lsguAZ2gHS9toCEdAx2QOPo3aSXV9lChoBkdAbdIkZ75VO2gHS+loCEdAx2QXOC5Et3V9lChoBkdAcNAXnQpnYmgHS8poCEdAx2QdrIHTqnV9lChoBkdAckOZkkKNQ2gHS+poCEdAx2QkT9KmK3V9lChoBkdAcvw4+KTB7GgHS99oCEdAx2QqW4Vh1HV9lChoBkdAcMF7ZFocrGgHS+doCEdAx2Qtl/Yra3V9lChoBkdAccyrOqvNeWgHS+RoCEdAx2Q38NQTEnV9lChoBkdAbr8FLWZqmGgHS91oCEdAx2RAA+6iCnV9lChoBkdAcaMCeEqUeWgHS99oCEdAx2RXa+vhZXV9lChoBkdAcrhMF2V3U2gHS9JoCEdAx2SOaef7JnV9lChoBkdAcOcL9deIEmgHS+toCEdAx2S0mtyPuHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |