Commit
·
601829e
1
Parent(s):
9a378ed
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-opt1.zip +3 -0
- ppo-LunarLander-v2-opt1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-opt1/data +99 -0
- ppo-LunarLander-v2-opt1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-opt1/policy.pth +3 -0
- ppo-LunarLander-v2-opt1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-opt1/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 280.60 +/- 20.06
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d175cd763b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d175cd76440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d175cd764d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d175cd76560>", "_build": "<function ActorCriticPolicy._build at 0x7d175cd765f0>", "forward": "<function ActorCriticPolicy.forward at 0x7d175cd76680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d175cd76710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d175cd767a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d175cd76830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d175cd768c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d175cd76950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d175cd769e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d175cb84340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693598145736558216, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3c2j325Ga6htl7Op6/gTQN/UW7AzWSuQAAgD8AAIA/zbLgPHvihLodupI7kxYjOJjRYjqTH3W3AACAPwAAgD+aT289XI8QuikFPTtmuYE1fjWkOzBkeDQAAIA/AACAP8BUyj0p6Ge69mR4OWaSbzTvgTg6yNiRuAAAgD8AAIA/mqvYPeHkn7oXCbW6l960ta67hDmFodA5AACAPwAAgD9m0gU9KWBKugLFybOyBGcvRRpVu29itjMAAIA/AACAP5qbArx7IpC6sHGKubrmgbTrv9Y6rKagOAAAgD8AAIA/JsGfvcfz+z5Alzk+YrBxvsNSq7zS2po9AAAAAAAAAAAzq6C8zNVXPmtkHT7MioC+VkyVPOkMOz0AAAAAAAAAABpO871ngaI/hbiHvusCyL5Yizm+IIuIPQAAAAAAAAAAJkgWPqSDVLve4My4TAHmNepApbzL7Pg3AACAPwAAgD8zGwu7/Kq0P1Pg0b2pXA+6C8hlOopFArwAAAAAAAAAAJrW+D0IgaQ99qE1vR8Zeb4th2e7XsjLPQAAAAAAAAAAphCkvSn4PLru13M4ip4SNMHtPztzrYy3AAAAAAAAgD/NEPu7XCM9uknXP7VLsLGw/dWYupNzUzQAAIA/AACAPwDw+zq6Fl4+9naWvLPNg77kzAG8bcpYPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUgCgsbvPWMAWyUTegDjAF0lEdAlRrxFAmiQHV9lChoBkdAYm3LW7OE/WgHTegDaAhHQJUbQo5PuXx1fZQoaAZHQGQNubI91U5oB03oA2gIR0CVJdPrv9cbdX2UKGgGR0Bj6XuAqd6LaAdN6ANoCEdAlScAOjIq9XV9lChoBkdAZRkC6pYLcGgHTegDaAhHQJUocWweNkx1fZQoaAZHQEWdrpJPIn1oB0vuaAhHQJUqdAkcCHR1fZQoaAZHQGVyk384xUNoB03oA2gIR0CVMVswco6TdX2UKGgGR0BeCAuVX3g2aAdN6ANoCEdAlTQVfmcOLHV9lChoBkdAYtIQvHtF8WgHTegDaAhHQJU1hL7Gecx1fZQoaAZHQF7M2rn1WbRoB03oA2gIR0CVOXIfr8iwdX2UKGgGR0BmTWq7yxzJaAdN6ANoCEdAlUWxwyZa3nV9lChoBkdAYDsgte2NN2gHTegDaAhHQJVbtv0h/y51fZQoaAZHQGcBd9Dx9XtoB03oA2gIR0CVXBMh5gPVdX2UKGgGR0Ax80+TvAoHaAdNCwFoCEdAlV8wymALA3V9lChoBkdAY6E0Mw1zhmgHTegDaAhHQJVhGSr5qM51fZQoaAZHQGSD5bhWHUNoB03oA2gIR0CVYRrPdEb6dX2UKGgGR0BmYUaCL/CJaAdN6ANoCEdAlWL75qM3qHV9lChoBkdAYbll4keIVWgHTegDaAhHQJVmp9LHuJF1fZQoaAZHQGBs0K7ZnL9oB03oA2gIR0CVbLy+6Ae8dX2UKGgGR0BlGqi48U22aAdN6ANoCEdAlXfpi/fwZ3V9lChoBkdAYM2ZnctXgmgHTegDaAhHQJV5dOk+HJt1fZQoaAZHQGEFaakRBeJoB03oA2gIR0CVe4tzS1E3dX2UKGgGR0Bls+RYA80UaAdN6ANoCEdAlX4nvlU6xXV9lChoBkdAY6ZFtKqXGGgHTegDaAhHQJWFuuHN5dJ1fZQoaAZHQGR7gc1fmcRoB03oA2gIR0CViByZa3ZxdX2UKGgGR0Bl9MkQf6oEaAdN6ANoCEdAlYlMl5WzW3V9lChoBkdAZcTmFJxvN2gHTegDaAhHQJWUvxZuAI91fZQoaAZHQGU1zgEU0vZoB03oA2gIR0CVqPN7SiM6dX2UKGgGR0BagWlANXo1aAdN6ANoCEdAlalRCY1HfHV9lChoBkdAZhXoicG1QmgHTegDaAhHQJWskt03fhx1fZQoaAZHQGPxXZ5AyEdoB03oA2gIR0CVrvV8CxNZdX2UKGgGR0BfDSbc45tFaAdN6ANoCEdAla73m/336HV9lChoBkdAZCnvaURnOGgHTegDaAhHQJWxe0MPSUl1fZQoaAZHQFs64hUzbexoB03oA2gIR0CVtsx2jfvXdX2UKGgGR0BkJjRQaaTfaAdN6ANoCEdAlb7RvNu+AXV9lChoBkdAZQ3SsKb8WWgHTegDaAhHQJXIcFlkH2R1fZQoaAZHQGUD5S3solVoB03oA2gIR0CVyZgV45cUdX2UKGgGR0Bi+R6hQFcIaAdN6ANoCEdAlcsObNKRMnV9lChoBkdAWkfGS6lLvmgHTegDaAhHQJXNB+SbH6x1fZQoaAZHQGKVTtkWhytoB03oA2gIR0CV07QYDTz/dX2UKGgGR0BmyNj5KvmpaAdN6ANoCEdAldZk+X7cf3V9lChoBkdAZnA0F8ohIWgHTegDaAhHQJXXvqKP4mF1fZQoaAZHQGERzjWCmMxoB03oA2gIR0CV5HGyX2M9dX2UKGgGR0BoG8lXzUZvaAdN6ANoCEdAlerfBzmwJXV9lChoBkdAYo+KaXrt3WgHTegDaAhHQJXreVmjCYV1fZQoaAZHQGLNWTHKfWdoB03oA2gIR0CWAiCdBjWkdX2UKGgGR0Bm0vpKSPluaAdN6ANoCEdAlgRSNCJGfHV9lChoBkdAYymqvvBrOGgHTegDaAhHQJYEUsH0K7Z1fZQoaAZHQFzHpLEk0JpoB03oA2gIR0CWBq8SwnpjdX2UKGgGR0BfStFrl/6PaAdN6ANoCEdAlguCSaEzwnV9lChoBkdAQx8fHPu5SWgHTSYBaAhHQJYM+oZQ53l1fZQoaAZHQGKb66reZXxoB03oA2gIR0CWEwNY8uBddX2UKGgGR0BIpGvfTCtSaAdNBgFoCEdAlhTtOh0yQHV9lChoBkdAYchFFUhmoWgHTegDaAhHQJYejGVAzHl1fZQoaAZHQF/Vo9cKPXFoB03oA2gIR0CWIGj0th/idX2UKGgGR0BlNwhwEQoTaAdN6ANoCEdAliLLXcxj8XV9lChoBkdAZAPgk1Mue2gHTegDaAhHQJYmEJdB0IV1fZQoaAZHQGSwydvsJIFoB03oA2gIR0CWMQZ1mrbQdX2UKGgGR0Bh43nnuAqeaAdN6ANoCEdAljQu7g88tHV9lChoBkdAXuFuFYdQwmgHTegDaAhHQJY1yw/xDst1fZQoaAZHQGKNp3X7LuBoB03oA2gIR0CWSrYa5wwTdX2UKGgGR0BceB64UeuFaAdN6ANoCEdAlks1l9SdfHV9lChoBkdAXp/DO1OTJWgHTegDaAhHQJZh+BpYcNp1fZQoaAZHQGCw5eZ5Rj1oB03oA2gIR0CWZS3cpLEldX2UKGgGR0Bg9+rKeTV2aAdN6ANoCEdAlmiAj+rEL3V9lChoBkdAbllag2606mgHTXsCaAhHQJZqjuqm0md1fZQoaAZHQGRHGXgLqlhoB03oA2gIR0CWbR8zQ/ordX2UKGgGR0Bkh7Z6D5CXaAdN6ANoCEdAlm57DMvAXXV9lChoBkdAZt+nDziCKGgHTegDaAhHQJZzgOz6ab51fZQoaAZHQGUgMVk+X7doB03oA2gIR0CWdSCJXQt0dX2UKGgGR0BhHk56t1ZDaAdN6ANoCEdAln0e76Hj63V9lChoBkdAYUeP+XJHRWgHTegDaAhHQJZ+oPiDM/11fZQoaAZHQFs+RZEDyOJoB03oA2gIR0CWg+8F6iTMdX2UKGgGR0Bnr0fPomojaAdN6ANoCEdAlo4N47ihnXV9lChoBkdAZj0PTXrdFmgHTegDaAhHQJaRCiJwbVB1fZQoaAZHQGWI82itaINoB03oA2gIR0CWkzNDMNc4dX2UKGgGR0Bw+3e3x4IKaAdNngJoCEdAlqBR5s0pE3V9lChoBkdAY6thYNiH7GgHTegDaAhHQJaplQFcIJJ1fZQoaAZHQGZ8Zc1O0sxoB03oA2gIR0CWqf2pAD7qdX2UKGgGR0BgG5PhybQUaAdN6ANoCEdAlq0PLcKw6nV9lChoBkdAZHsAOrhismgHTegDaAhHQJa/Pn8sMAp1fZQoaAZHQGLf+u3c581oB03oA2gIR0CWwT/WDpTudX2UKGgGR0BjNzIxQBPsaAdN6ANoCEdAlsLxk7Omi3V9lChoBkdAXh90jkdWAGgHTegDaAhHQJbGjKISDh91fZQoaAZHQGsFPfbblBBoB000AmgIR0CWxsGL1mJ4dX2UKGgGR0BiyfS4OMESaAdN6ANoCEdAlsuEgSvkinV9lChoBkdAY4X6dlNDdGgHTegDaAhHQJbNiJpFkQR1fZQoaAZHQG/U189fTkRoB02KAmgIR0CWziQvHtF8dX2UKGgGR0AyIGY8dPtVaAdNLAFoCEdAltKuBYmsvXV9lChoBkdAEVHG0eEIxGgHTSMBaAhHQJbUUYsNDtx1fZQoaAZHQGSKj5CWu5loB03oA2gIR0CW1ru63AmBdX2UKGgGR0Bjb+ff4yoGaAdN6ANoCEdAltf5DNQj2XV9lChoBkdAZRLcLSeAeGgHTegDaAhHQJbbocOskpt1fZQoaAZHQGZ5hW5paidoB03oA2gIR0CW5ZfLs8gZdX2UKGgGR0BuKEqhDgIhaAdNOANoCEdAluumw/xDs3V9lChoBkdAY4XIhhYvFmgHTegDaAhHQJbuVcxCY1J1fZQoaAZHQHHYyZ4Oc2BoB012AWgIR0CW7mcAzYVZdX2UKGgGR0Bw2fRb8m8eaAdNsQNoCEdAlvKpnQID5nV9lChoBkdAXOxHy3CsO2gHTegDaAhHQJb5QojOcDt1fZQoaAZHQF8EAt4A0bdoB03oA2gIR0CW+z1y/9HddWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d175cd763b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d175cd76440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d175cd764d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d175cd76560>", "_build": "<function ActorCriticPolicy._build at 0x7d175cd765f0>", "forward": "<function ActorCriticPolicy.forward at 0x7d175cd76680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d175cd76710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d175cd767a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d175cd76830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d175cd768c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d175cd76950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d175cd769e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d175cb84340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693599925710934535, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3NtbyzFrA/G0Wvvoerp75UJ+W7TG0EvgAAAAAAAAAARneSPvQiaz/33wi+d2a6vscTyj76ho6+AAAAAAAAAABmprI5w3FCuuVejzbTvnIxrDo9u9o5qbUAAIA/AACAPzNnt7yDTkK8a7liuo3anzwuaKQ9+oGCvQAAgD8AAIA/WnefPYh35D4+Chy+8PnEvlrrer2Tsjq8AAAAAAAAAACa3sE8QypLP8CaMr2VoM++CrKIvEj83b0AAAAAAAAAAM3Yz734DZY/KpxUvtIG8r7MDwC+9NEKvQAAAAAAAAAAAJyHO0hVg7oIjV46UBKttf4vITtTZX25AACAPwAAgD8zQsI8XCkpPhK+tT1uuZ6+QLXGvFpDhj0AAAAAAAAAAGZw+LyhtZy8ghk8PnTUm73LD+y9mivIvgAAgD8AAIA/7U0Ovrjirj4mKSM9REG6vmkGf70KIAo9AAAAAAAAAABmGj48R3qaPzo6DTymOOy+CSmTPZTjMD0AAAAAAAAAAKD1B74uRqA/QsQav3nYCb8TtD++8JbBvgAAAAAAAAAAZuqVPtfhKr2jxdU7boQ8usH3lL66kAm7AACAPwAAgD+zr7Y9GbKHP2W7Sz4KT76++TVcPn/VED4AAAAAAAAAAJpoUr2MU3o+2KCyPWGVp750pjW9yt84PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE7MneBQN2MAWyUS/6MAXSUR0Cl520gbIcSdX2UKGgGR0ByrD+FUQ05aAdNHgFoCEdApeeBMnJDE3V9lChoBkdAcwFVj7Q9imgHS/BoCEdApefZy6tknXV9lChoBkdAcqn9vS+g12gHS/1oCEdApeff8uSOinV9lChoBkdAcqoxrzoUz2gHTSYBaAhHQKXoH9cbBGh1fZQoaAZHQHF7k1EVnEloB0vcaAhHQKXoKZx7zCl1fZQoaAZHQG/HKQq7ROVoB0v3aAhHQKXoZAkcCHR1fZQoaAZHQHHMTZ+QU6BoB014A2gIR0Cl6HweV9ncdX2UKGgGR0Bxv4uHvc8DaAdL/GgIR0Cl6JB8YyfudX2UKGgGR0BxJcLApKBeaAdL5WgIR0Cl6Pa9sabXdX2UKGgGR0Bwbq+mFajfaAdL62gIR0Cl6QyCWeH0dX2UKGgGR0ByWAmeDnNgaAdL5mgIR0Cl6Rc/D+BIdX2UKGgGR0Bxi/k2gnMMaAdL1WgIR0Cl6Tk92X9jdX2UKGgGR0Bs0IzBRAKOaAdL3mgIR0Cl6XDD0lJIdX2UKGgGR0BvUXRw6ySnaAdL4mgIR0Cl6cJTl1bJdX2UKGgGR0Bxkj/+85CGaAdL2mgIR0Cl6edGI9DAdX2UKGgGR0ByB/Wvr4WUaAdL8GgIR0Cl6jup84PxdX2UKGgGR0BvNKfL9uP4aAdNEQFoCEdApepiNEPUa3V9lChoBkdAbxnnxJ/XoWgHS+VoCEdApep3T/hl2HV9lChoBkdAbhOGxD9fkWgHS9xoCEdApeqiAWi1zHV9lChoBkdAcyEv3rUsnWgHS/VoCEdAperllPJq7HV9lChoBkdAa/3q3VkMC2gHTRcBaAhHQKXrDcv/R3N1fZQoaAZHQHJPIKIBRyhoB0veaAhHQKXrGWXTmXB1fZQoaAZHQHCv8nNPgvVoB0vzaAhHQKXrKCp3os91fZQoaAZHQHDj7rkbPyFoB00KAWgIR0Cl64O01IiDdX2UKGgGR0BySR9Sde6aaAdL9mgIR0Cl68uVPepGdX2UKGgGR0BwTm/Yao/BaAdL9WgIR0Cl6+AMMI/rdX2UKGgGR0ByhP0f5k9VaAdL3GgIR0Cl7ACcwxnGdX2UKGgGR0BxVI7jkuHvaAdNBQFoCEdApewasOoYN3V9lChoBkdAcwrfYSQHRmgHTRABaAhHQKXsWNZNfw91fZQoaAZHQHMMnBxgiNdoB0v0aAhHQKXsw6BiCrd1fZQoaAZHQG88tZmqYJFoB00WAWgIR0Cl7QpazNUwdX2UKGgGR0BymCScLBsRaAdL5mgIR0Cl7S3EAHVxdX2UKGgGR0Bw/fbcoH9naAdL62gIR0Cl7W0+1SfldX2UKGgGR0ByRDUExIrfaAdNAQFoCEdApe1w5DJEIHV9lChoBkdAcKS9ECvHLmgHTRIBaAhHQKXtgac7Qsx1fZQoaAZHQHFYuwX668RoB0vdaAhHQKXtqleF+NN1fZQoaAZHQHKNn1OCXhRoB0vyaAhHQKX5AVu76Hl1fZQoaAZHQG2m4nfEXLxoB0voaAhHQKX5MbIcR151fZQoaAZHQHFmVw5vLoxoB00NAWgIR0Cl+bmrjo6kdX2UKGgGR0Byhns0HhS+aAdL82gIR0Cl+diItUXIdX2UKGgGR0BwSJb6guh9aAdL42gIR0Cl+jGbTc7AdX2UKGgGR0Bv34ddVvMsaAdL/GgIR0Cl+kfzreImdX2UKGgGR0B0AWxUvPC3aAdL5mgIR0Cl+lcp1A7gdX2UKGgGR0Byce65Gz8haAdNBAFoCEdApfpxoqTbFnV9lChoBkdAb/3qveP7vWgHS+ZoCEdApfqVS/CZW3V9lChoBkdAcyvq2SdOI2gHS+poCEdApftH+MqBmXV9lChoBkdAcrrbNbC79WgHTQsBaAhHQKX7cLBsQ/Z1fZQoaAZHQHJCJ08vEjxoB0v2aAhHQKX7lZamoBJ1fZQoaAZHQHLTwRf4REpoB0vlaAhHQKX7n/6O5rh1fZQoaAZHQG37wRf4REpoB00GAWgIR0Cl/AK+i8FqdX2UKGgGR0BxfJBt1p0waAdL8mgIR0Cl/B7lJYkndX2UKGgGR0Bw70zSCvovaAdL1WgIR0Cl/EpFCswMdX2UKGgGR0BymWk/KQq7aAdNDQFoCEdApfxYAU+LWXV9lChoBkdAcgVP+XJHRWgHTQ4BaAhHQKX8lTlT3qR1fZQoaAZHQG4Y6Jyhi9ZoB0vXaAhHQKX8w2l2vB91fZQoaAZHQHHDG8VYZEVoB0v+aAhHQKX85ul41P51fZQoaAZHQG7BDOkcjqxoB0vjaAhHQKX8/nr6ciJ1fZQoaAZHQHGqo3rD631oB0v/aAhHQKX9hesxO+J1fZQoaAZHQG9eQd8zAN5oB00IAWgIR0Cl/c8rAgxKdX2UKGgGR0BzUEd0aIepaAdL5GgIR0Cl/hlNcnmadX2UKGgGR0ByzCu0TlDGaAdL4GgIR0Cl/jJtrKvFdX2UKGgGR0ByqMLNOdoWaAdL12gIR0Cl/joKD017dX2UKGgGR0BuJl9fCyhSaAdL+2gIR0Cl/rcawUxmdX2UKGgGR0ByGfe7+T/yaAdL9WgIR0Cl/xChN/OMdX2UKGgGR0Bx3Gef7JnyaAdL5WgIR0Cl/yf642CNdX2UKGgGR0BwTBE9dNWVaAdL92gIR0Cl/zbyYoiLdX2UKGgGR0ByZwSDh99daAdL32gIR0Cl/2bw8W9EdX2UKGgGR0BzZe2PT5O8aAdL+mgIR0Cl/3vmPo3adX2UKGgGR0Bup1eOXE61aAdL5WgIR0Cl/+YSQHRkdX2UKGgGR0Bu7bqY7aIvaAdL8GgIR0Cl//MNUfgadX2UKGgGR0BzT8/s3Q2NaAdNAgFoCEdApgAGF36hx3V9lChoBkdAcZ6Vmz0HyGgHS+BoCEdApgBdByCFsnV9lChoBkdAbXtu5z5oG2gHS+1oCEdApgDWQjlgdHV9lChoBkdAcRiQ7tAs1GgHS/NoCEdApgFCoqCpWHV9lChoBkdAcQ4SNOuaF2gHTQEBaAhHQKYBnjYqXnh1fZQoaAZHQHKMP1+RYA9oB0veaAhHQKYBr0PpY9x1fZQoaAZHQHEozdDYywhoB00PAWgIR0CmAcjlxOtXdX2UKGgGR0BxfJ2HLzPKaAdL62gIR0CmAja6reZYdX2UKGgGR0BwOHALy+YdaAdL+WgIR0CmAoHOSntOdX2UKGgGR0ByiB5AyEcsaAdL9WgIR0CmAriUX531dX2UKGgGR0Bv0hreqJdjaAdNAwFoCEdApgMFZFG5MHV9lChoBkdAcSGv863iJmgHS9toCEdApgMUK/mDDnV9lChoBkdAcmsa5PM0QGgHTSMDaAhHQKYDMKXv6TJ1fZQoaAZHQHHAEtZmqYJoB0vuaAhHQKYDQPy08eV1fZQoaAZHQG+2a/yoXKtoB0vzaAhHQKYDRK5kK/p1fZQoaAZHQGxl38GcFyJoB00rAWgIR0CmA0piRW92dX2UKGgGR0ByiwgEEC/5aAdL3mgIR0CmA3HGKhtcdX2UKGgGR0Bw1LPGACnxaAdL62gIR0CmA/zNt65YdX2UKGgGR0Bx8wj1PFefaAdL1WgIR0CmBBIZIg/1dX2UKGgGR0BzYPhOxjaxaAdL42gIR0CmBIXBguyvdX2UKGgGR0BxC3utwJgLaAdL3mgIR0CmBIOuieundX2UKGgGR0Bx2RUedTYNaAdL5mgIR0CmBLpm/WUbdX2UKGgGR0BxOiHTI/7jaAdL6GgIR0CmBSkB0ZFYdX2UKGgGR0BvcyamXPZ7aAdL3GgIR0CmBUVU+9rXdX2UKGgGR0Bzg3PLPldUaAdL42gIR0CmBYnkkrwwdX2UKGgGR0BxWbfxc3VDaAdL2GgIR0CmBaeZ5Rj0dX2UKGgGR0BxdjW4EwFlaAdL4WgIR0CmBczkyULVdX2UKGgGR0Bv2RT6zmfXaAdL02gIR0CmBcz1K5CodX2UKGgGR0Bw5aeJ53TvaAdL42gIR0CmBfhGQSzxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-opt1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79e870ce1cbcdd53db07ed16022799a41d5ffc5459f2dd91b70b6cf2446a7e74
|
3 |
+
size 146654
|
ppo-LunarLander-v2-opt1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-opt1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d175cd763b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d175cd76440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d175cd764d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d175cd76560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d175cd765f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d175cd76680>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d175cd76710>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d175cd767a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d175cd76830>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d175cd768c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d175cd76950>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d175cd769e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d175cb84340>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693599925710934535,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3NtbyzFrA/G0Wvvoerp75UJ+W7TG0EvgAAAAAAAAAARneSPvQiaz/33wi+d2a6vscTyj76ho6+AAAAAAAAAABmprI5w3FCuuVejzbTvnIxrDo9u9o5qbUAAIA/AACAPzNnt7yDTkK8a7liuo3anzwuaKQ9+oGCvQAAgD8AAIA/WnefPYh35D4+Chy+8PnEvlrrer2Tsjq8AAAAAAAAAACa3sE8QypLP8CaMr2VoM++CrKIvEj83b0AAAAAAAAAAM3Yz734DZY/KpxUvtIG8r7MDwC+9NEKvQAAAAAAAAAAAJyHO0hVg7oIjV46UBKttf4vITtTZX25AACAPwAAgD8zQsI8XCkpPhK+tT1uuZ6+QLXGvFpDhj0AAAAAAAAAAGZw+LyhtZy8ghk8PnTUm73LD+y9mivIvgAAgD8AAIA/7U0Ovrjirj4mKSM9REG6vmkGf70KIAo9AAAAAAAAAABmGj48R3qaPzo6DTymOOy+CSmTPZTjMD0AAAAAAAAAAKD1B74uRqA/QsQav3nYCb8TtD++8JbBvgAAAAAAAAAAZuqVPtfhKr2jxdU7boQ8usH3lL66kAm7AACAPwAAgD+zr7Y9GbKHP2W7Sz4KT76++TVcPn/VED4AAAAAAAAAAJpoUr2MU3o+2KCyPWGVp750pjW9yt84PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE7MneBQN2MAWyUS/6MAXSUR0Cl520gbIcSdX2UKGgGR0ByrD+FUQ05aAdNHgFoCEdApeeBMnJDE3V9lChoBkdAcwFVj7Q9imgHS/BoCEdApefZy6tknXV9lChoBkdAcqn9vS+g12gHS/1oCEdApeff8uSOinV9lChoBkdAcqoxrzoUz2gHTSYBaAhHQKXoH9cbBGh1fZQoaAZHQHF7k1EVnEloB0vcaAhHQKXoKZx7zCl1fZQoaAZHQG/HKQq7ROVoB0v3aAhHQKXoZAkcCHR1fZQoaAZHQHHMTZ+QU6BoB014A2gIR0Cl6HweV9ncdX2UKGgGR0Bxv4uHvc8DaAdL/GgIR0Cl6JB8YyfudX2UKGgGR0BxJcLApKBeaAdL5WgIR0Cl6Pa9sabXdX2UKGgGR0Bwbq+mFajfaAdL62gIR0Cl6QyCWeH0dX2UKGgGR0ByWAmeDnNgaAdL5mgIR0Cl6Rc/D+BIdX2UKGgGR0Bxi/k2gnMMaAdL1WgIR0Cl6Tk92X9jdX2UKGgGR0Bs0IzBRAKOaAdL3mgIR0Cl6XDD0lJIdX2UKGgGR0BvUXRw6ySnaAdL4mgIR0Cl6cJTl1bJdX2UKGgGR0Bxkj/+85CGaAdL2mgIR0Cl6edGI9DAdX2UKGgGR0ByB/Wvr4WUaAdL8GgIR0Cl6jup84PxdX2UKGgGR0BvNKfL9uP4aAdNEQFoCEdApepiNEPUa3V9lChoBkdAbxnnxJ/XoWgHS+VoCEdApep3T/hl2HV9lChoBkdAbhOGxD9fkWgHS9xoCEdApeqiAWi1zHV9lChoBkdAcyEv3rUsnWgHS/VoCEdAperllPJq7HV9lChoBkdAa/3q3VkMC2gHTRcBaAhHQKXrDcv/R3N1fZQoaAZHQHJPIKIBRyhoB0veaAhHQKXrGWXTmXB1fZQoaAZHQHCv8nNPgvVoB0vzaAhHQKXrKCp3os91fZQoaAZHQHDj7rkbPyFoB00KAWgIR0Cl64O01IiDdX2UKGgGR0BySR9Sde6aaAdL9mgIR0Cl68uVPepGdX2UKGgGR0BwTm/Yao/BaAdL9WgIR0Cl6+AMMI/rdX2UKGgGR0ByhP0f5k9VaAdL3GgIR0Cl7ACcwxnGdX2UKGgGR0BxVI7jkuHvaAdNBQFoCEdApewasOoYN3V9lChoBkdAcwrfYSQHRmgHTRABaAhHQKXsWNZNfw91fZQoaAZHQHMMnBxgiNdoB0v0aAhHQKXsw6BiCrd1fZQoaAZHQG88tZmqYJFoB00WAWgIR0Cl7QpazNUwdX2UKGgGR0BymCScLBsRaAdL5mgIR0Cl7S3EAHVxdX2UKGgGR0Bw/fbcoH9naAdL62gIR0Cl7W0+1SfldX2UKGgGR0ByRDUExIrfaAdNAQFoCEdApe1w5DJEIHV9lChoBkdAcKS9ECvHLmgHTRIBaAhHQKXtgac7Qsx1fZQoaAZHQHFYuwX668RoB0vdaAhHQKXtqleF+NN1fZQoaAZHQHKNn1OCXhRoB0vyaAhHQKX5AVu76Hl1fZQoaAZHQG2m4nfEXLxoB0voaAhHQKX5MbIcR151fZQoaAZHQHFmVw5vLoxoB00NAWgIR0Cl+bmrjo6kdX2UKGgGR0Byhns0HhS+aAdL82gIR0Cl+diItUXIdX2UKGgGR0BwSJb6guh9aAdL42gIR0Cl+jGbTc7AdX2UKGgGR0Bv34ddVvMsaAdL/GgIR0Cl+kfzreImdX2UKGgGR0B0AWxUvPC3aAdL5mgIR0Cl+lcp1A7gdX2UKGgGR0Byce65Gz8haAdNBAFoCEdApfpxoqTbFnV9lChoBkdAb/3qveP7vWgHS+ZoCEdApfqVS/CZW3V9lChoBkdAcyvq2SdOI2gHS+poCEdApftH+MqBmXV9lChoBkdAcrrbNbC79WgHTQsBaAhHQKX7cLBsQ/Z1fZQoaAZHQHJCJ08vEjxoB0v2aAhHQKX7lZamoBJ1fZQoaAZHQHLTwRf4REpoB0vlaAhHQKX7n/6O5rh1fZQoaAZHQG37wRf4REpoB00GAWgIR0Cl/AK+i8FqdX2UKGgGR0BxfJBt1p0waAdL8mgIR0Cl/B7lJYkndX2UKGgGR0Bw70zSCvovaAdL1WgIR0Cl/EpFCswMdX2UKGgGR0BymWk/KQq7aAdNDQFoCEdApfxYAU+LWXV9lChoBkdAcgVP+XJHRWgHTQ4BaAhHQKX8lTlT3qR1fZQoaAZHQG4Y6Jyhi9ZoB0vXaAhHQKX8w2l2vB91fZQoaAZHQHHDG8VYZEVoB0v+aAhHQKX85ul41P51fZQoaAZHQG7BDOkcjqxoB0vjaAhHQKX8/nr6ciJ1fZQoaAZHQHGqo3rD631oB0v/aAhHQKX9hesxO+J1fZQoaAZHQG9eQd8zAN5oB00IAWgIR0Cl/c8rAgxKdX2UKGgGR0BzUEd0aIepaAdL5GgIR0Cl/hlNcnmadX2UKGgGR0ByzCu0TlDGaAdL4GgIR0Cl/jJtrKvFdX2UKGgGR0ByqMLNOdoWaAdL12gIR0Cl/joKD017dX2UKGgGR0BuJl9fCyhSaAdL+2gIR0Cl/rcawUxmdX2UKGgGR0ByGfe7+T/yaAdL9WgIR0Cl/xChN/OMdX2UKGgGR0Bx3Gef7JnyaAdL5WgIR0Cl/yf642CNdX2UKGgGR0BwTBE9dNWVaAdL92gIR0Cl/zbyYoiLdX2UKGgGR0ByZwSDh99daAdL32gIR0Cl/2bw8W9EdX2UKGgGR0BzZe2PT5O8aAdL+mgIR0Cl/3vmPo3adX2UKGgGR0Bup1eOXE61aAdL5WgIR0Cl/+YSQHRkdX2UKGgGR0Bu7bqY7aIvaAdL8GgIR0Cl//MNUfgadX2UKGgGR0BzT8/s3Q2NaAdNAgFoCEdApgAGF36hx3V9lChoBkdAcZ6Vmz0HyGgHS+BoCEdApgBdByCFsnV9lChoBkdAbXtu5z5oG2gHS+1oCEdApgDWQjlgdHV9lChoBkdAcRiQ7tAs1GgHS/NoCEdApgFCoqCpWHV9lChoBkdAcQ4SNOuaF2gHTQEBaAhHQKYBnjYqXnh1fZQoaAZHQHKMP1+RYA9oB0veaAhHQKYBr0PpY9x1fZQoaAZHQHEozdDYywhoB00PAWgIR0CmAcjlxOtXdX2UKGgGR0BxfJ2HLzPKaAdL62gIR0CmAja6reZYdX2UKGgGR0BwOHALy+YdaAdL+WgIR0CmAoHOSntOdX2UKGgGR0ByiB5AyEcsaAdL9WgIR0CmAriUX531dX2UKGgGR0Bv0hreqJdjaAdNAwFoCEdApgMFZFG5MHV9lChoBkdAcSGv863iJmgHS9toCEdApgMUK/mDDnV9lChoBkdAcmsa5PM0QGgHTSMDaAhHQKYDMKXv6TJ1fZQoaAZHQHHAEtZmqYJoB0vuaAhHQKYDQPy08eV1fZQoaAZHQG+2a/yoXKtoB0vzaAhHQKYDRK5kK/p1fZQoaAZHQGxl38GcFyJoB00rAWgIR0CmA0piRW92dX2UKGgGR0ByiwgEEC/5aAdL3mgIR0CmA3HGKhtcdX2UKGgGR0Bw1LPGACnxaAdL62gIR0CmA/zNt65YdX2UKGgGR0Bx8wj1PFefaAdL1WgIR0CmBBIZIg/1dX2UKGgGR0BzYPhOxjaxaAdL42gIR0CmBIXBguyvdX2UKGgGR0BxC3utwJgLaAdL3mgIR0CmBIOuieundX2UKGgGR0Bx2RUedTYNaAdL5mgIR0CmBLpm/WUbdX2UKGgGR0BxOiHTI/7jaAdL6GgIR0CmBSkB0ZFYdX2UKGgGR0BvcyamXPZ7aAdL3GgIR0CmBUVU+9rXdX2UKGgGR0Bzg3PLPldUaAdL42gIR0CmBYnkkrwwdX2UKGgGR0BxWbfxc3VDaAdL2GgIR0CmBaeZ5Rj0dX2UKGgGR0BxdjW4EwFlaAdL4WgIR0CmBczkyULVdX2UKGgGR0Bv2RT6zmfXaAdL02gIR0CmBcz1K5CodX2UKGgGR0Bw5aeJ53TvaAdL42gIR0CmBfhGQSzxdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 496,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2-opt1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcd61c412a1b81dd7ff342a1c2b09431c370e02241ff4823710c8718901f2f44
|
3 |
+
size 87929
|
ppo-LunarLander-v2-opt1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eff1aba774f9d5e509f1e6f15f33bf22207f079c9efbc2bf5050a5cd3d13e77
|
3 |
+
size 43329
|
ppo-LunarLander-v2-opt1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-opt1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 280.59575813900307, "std_reward": 20.057820334103255, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-01T20:42:32.523019"}
|