gsarti commited on
Commit
3fe22d9
1 Parent(s): e88dab6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +146 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - it
4
+ license: apache-2.0
5
+ library_name: transformers
6
+ tags:
7
+ - text-generation-inference
8
+ - unsloth
9
+ - llama
10
+ - llama3.1
11
+ - trl
12
+ - word-game
13
+ - rebus
14
+ - italian
15
+ - word-puzzle
16
+ - crossword
17
+ datasets:
18
+ - gsarti/eureka-rebus
19
+ base_model: unsloth/Meta-Llama-3.1-8B-bnb-4bit
20
+
21
+ model-index:
22
+ - name: gsarti/llama-3.1-8b-rebus-solver-fp16
23
+ results:
24
+ - task:
25
+ type: verbalized-rebus-solving
26
+ name: Verbalized Rebus Solving
27
+ dataset:
28
+ type: gsarti/eureka-rebus
29
+ name: EurekaRebus
30
+ config: llm_sft
31
+ split: test
32
+ revision: 0f24ebc3b66cd2f8968077a5eb058be1d5af2f05
33
+ metrics:
34
+ - type: exact_match
35
+ value: 0.59
36
+ name: First Pass Exact Match
37
+ - type: exact_match
38
+ value: 0.56
39
+ name: Solution Exact Match
40
+ ---
41
+
42
+ # LLaMA-3.1 8B Verbalized Rebus Solver - PEFT Adapters 🇮🇹
43
+
44
+ This model is a parameter-efficient fine-tuned version of LLaMA-3.1 8B trained for verbalized rebus solving in Italian, as part of the [release](https://huggingface.co/collections/gsarti/verbalized-rebus-clic-it-2024-66ab8f11cb04e68bdf4fb028) for our paper [Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses](https://arxiv.org/abs/2408.00584). The task of verbalized rebus solving consists of converting an encrypted sequence of letters and crossword definitions into a solution phrase matching the word lengths specified in the solution key. An example is provided below.
45
+
46
+ The model was trained in 4-bit precision for 5070 steps on the verbalized subset of the [EurekaRebus](https://huggingface.co/datasets/gsarti/eureka-rebus) using QLora via [Unsloth](https://github.com/unslothai/unsloth) and [TRL](https://github.com/huggingface/trl). This repository contains PEFT-compatible adapters saved throughout training. Use the revision=<GIT_HASH> parameter in from_pretrained to load mid-training adapter checkpoints.
47
+
48
+ We also provide [FP16 merged](https://huggingface.co/gsarti/llama-3.1-8b-rebus-solver-fp16) and [8-bit GGUF](https://huggingface.co/gsarti/gsarti/llama-3.1-8b-rebus-solver-Q8_0-GGUF) versions of this model for analysis and local execution.
49
+
50
+ ## Using the Model
51
+
52
+ The following example shows how to perform inference using Unsloth:
53
+
54
+ ```python
55
+
56
+ # With Unsloth (efficient, requires GPU)
57
+ from unsloth import FastLanguageModel
58
+
59
+ model, tokenizer = FastLanguageModel.from_pretrained(
60
+ model_name = "gsarti/llama-3.1-8b-rebus-solver-adapters",
61
+ max_seq_length = 1248,
62
+ load_in_4bit = True,
63
+ )
64
+
65
+ # Inference
66
+ verbalized_rebus = "[Materiale espulso dai vulcani] R O [Strumento del calzolaio] [Si trovano ai lati del bacino] C I [Si ingrassano con la polenta] E I N [Contiene scorte di cibi] B [Isola in francese]"
67
+ solution_key = "1 ' 5 6 5 3 3 1 14"
68
+ template = """<|begin_of_text|><|start_header_id|>user<|end_header_id|>
69
+
70
+ Risolvi gli indizi tra parentesi per ottenere una prima lettura, e usa la chiave di lettura per ottenere la soluzione del rebus.
71
+
72
+ Rebus: {rebus}
73
+ Chiave risolutiva: {key}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
74
+ input = template.format(rebus=verbalized_rebus, key=solution_key)
75
+ inputs = tokenizer(input, return_tensors="pt")["input_ids"]
76
+ outputs = model.generate(input_ids = inputs, max_new_tokens = 500, use_cache = True)
77
+ model_generations = tokenizer.batch_decode(outputs)
78
+ print(model_generations[0])
79
+
80
+ # Procediamo alla risoluzione del rebus passo per passo:
81
+ # - [Materiale espulso dai vulcani] = lava
82
+ # - R O = R O
83
+ # - [Strumento del calzolaio] = lesina
84
+ # - [Si trovano ai lati del bacino] = anche
85
+ # - C I = C I
86
+ # - [Si ingrassano con la polenta] = oche
87
+ # - E I N = E I N
88
+ # - [Contiene scorte di cibi] = dispensa
89
+ # - B = B
90
+ # - [Isola in francese] = ile
91
+ #
92
+ # Prima lettura: lava R O lesina anche C I oche E I N silos B ile
93
+ #
94
+ # Ora componiamo la soluzione seguendo la chiave risolutiva:
95
+ # 1 = L
96
+ # ' = '
97
+ # 5 = avaro
98
+ # 6 = lesina
99
+ # 5 = anche
100
+ # 3 = ciò
101
+ # 3 = che
102
+ # 1 = è
103
+ # 14 = indispensabile
104
+ #
105
+ # Soluzione: L'avaro lesina anche ciò che è indispensabile
106
+ ```
107
+
108
+ See the official [code release](https://github.com/gsarti/verbalized-rebus) for more examples.
109
+
110
+ ### Local usage with Ollama
111
+
112
+ A ready-to-use local version of this model is hosted on the [Ollama Hub](https://ollama.com/gsarti/llama3.1-8b-rebus-solver) and can be used as follows:
113
+
114
+ ```shell
115
+ ollama run gsarti/llama3.1-8b-rebus-solver "Rebus: [Materiale espulso dai vulcani] R O [Strumento del calzolaio] [Si trovano ai lati del bacino] C I [Si ingrassano con la polenta] E I N [Contiene scorte di cibi] B [Isola in francese]\nChiave risolutiva: 1 ' 5 6 5 3 3 1 14"
116
+ ```
117
+
118
+ ## Limitations
119
+
120
+ **Lexical overfitting**: As remarked in the related publication, the model overfitted the set of definitions/answers for first pass words. As a result, words that were [explicitly witheld](https://huggingface.co/datasets/gsarti/eureka-rebus/blob/main/ood_words.txt) from the training set cause significant performance degradation when used as solutions for verbalized rebuses' definitions. You can compare model performances between [in-domain](https://huggingface.co/datasets/gsarti/eureka-rebus/blob/main/id_test.jsonl) and [out-of-domain](https://huggingface.co/datasets/gsarti/eureka-rebus/blob/main/ood_test.jsonl) test examples to verify this limitation.
121
+
122
+ ## Model curators
123
+
124
+ For problems or updates on this model, please contact [gabriele.sarti996@gmail.com](mailto:gabriele.sarti996@gmail.com).
125
+
126
+ ### Citation Information
127
+
128
+ If you use this model in your work, please cite our paper as follows:
129
+
130
+ ```bibtex
131
+ @article{sarti-etal-2024-rebus,
132
+ title = "Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses",
133
+ author = "Sarti, Gabriele and Caselli, Tommaso and Nissim, Malvina and Bisazza, Arianna",
134
+ journal = "ArXiv",
135
+ month = jul,
136
+ year = "2024",
137
+ volume = {abs/2408.00584},
138
+ url = {https://arxiv.org/abs/2408.00584},
139
+ }
140
+ ```
141
+
142
+ ## Acknowledgements
143
+
144
+ We are grateful to the [Associazione Culturale "Biblioteca Enigmistica Italiana - G. Panini"](http://www.enignet.it/home) for making its rebus collection freely accessible on the [Eureka5 platform](http://www.eureka5.it).
145
+
146
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)