julien-c HF staff commited on
Commit
798e9c1
1 Parent(s): cefe524

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/gsarti/covidbert-nli/README.md

Files changed (1) hide show
  1. README.md +38 -0
README.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CovidBERT-NLI
2
+
3
+ This is the model **CovidBERT** trained by DeepSet on AllenAI's [CORD19 Dataset](https://pages.semanticscholar.org/coronavirus-research) of scientific articles about coronaviruses.
4
+
5
+ The model uses the original BERT wordpiece vocabulary and was subsequently fine-tuned on the [SNLI](https://nlp.stanford.edu/projects/snli/) and the [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) datasets using the [`sentence-transformers` library](https://github.com/UKPLab/sentence-transformers/) to produce universal sentence embeddings [1] using the **average pooling strategy** and a **softmax loss**.
6
+
7
+ Parameter details for the original training on CORD-19 are available on [DeepSet's MLFlow](https://public-mlflow.deepset.ai/#/experiments/2/runs/ba27d00c30044ef6a33b1d307b4a6cba)
8
+
9
+ **Base model**: `deepset/covid_bert_base` from HuggingFace's `AutoModel`.
10
+
11
+ **Training time**: ~6 hours on the NVIDIA Tesla P100 GPU provided in Kaggle Notebooks.
12
+
13
+ **Parameters**:
14
+
15
+ | Parameter | Value |
16
+ |------------------|-------|
17
+ | Batch size | 64 |
18
+ | Training steps | 23000 |
19
+ | Warmup steps | 1450 |
20
+ | Lowercasing | True |
21
+ | Max. Seq. Length | 128 |
22
+
23
+ **Performances**: The performance was evaluated on the test portion of the [STS dataset](http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark) using Spearman rank correlation and compared to the performances of similar models obtained with the same procedure to verify its performances.
24
+
25
+ | Model | Score |
26
+ |-------------------------------|-------------|
27
+ | `covidbert-nli` (this) | 67.52 |
28
+ | `gsarti/biobert-nli` | 73.40 |
29
+ | `gsarti/scibert-nli` | 74.50 |
30
+ | `bert-base-nli-mean-tokens`[2]| 77.12 |
31
+
32
+ An example usage for similarity-based scientific paper retrieval is provided in the [Covid-19 Semantic Browser](https://github.com/gsarti/covid-papers-browser) repository.
33
+
34
+ **References:**
35
+
36
+ [1] A. Conneau et al., [Supervised Learning of Universal Sentence Representations from Natural Language Inference Data](https://www.aclweb.org/anthology/D17-1070/)
37
+
38
+ [2] N. Reimers et I. Gurevych, [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://www.aclweb.org/anthology/D19-1410/)